Mostrar el registro sencillo del ítem

Sistema de control para reducir el consumo de hidrógeno en celdas de combustible PEM considerando incertidumbres paramétricas

dc.creatorRíos, Richard
dc.creatorRamos-Paja, Carlos A.
dc.creatorEspinosa, Jairo J.
dc.date2016-07-30
dc.date.accessioned2021-03-18T21:02:48Z
dc.date.available2021-03-18T21:02:48Z
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/59
dc.identifier10.22430/22565337.59
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/11387
dc.descriptionThis paper presents a control system for reducing the hydrogen consumption for a Polymer Electrolyte Membrane fuel cell, also considering parametric uncertainties. The control system is based on a non-linear state space model of the fuel cell, a Kalman filter/estimator, a linear state feedback controller and a Maximum Power Point (MPP) tracking algorithm. The control objective is to supply the requested load power, avoiding oxygen starvation with minimum fuel consumption using a Perturb and Observe (P&O) algorithm. The performance of the control system was assessed under parametric uncertainties by simulating a performance degradation of the compressor due to aging. Thus, two cases were simulated: first, a mismatch between the system and the linear model in the (open-loop) air compressor gain; and second, a mismatch between the system and the linear model in the current compressor and losses. The simulation results showed that the Kalman filter/estimator overcome the uncertainties produced by the parametrical variations. Besides, the P&O algorithm accomplished to provide the suitable compressor voltage without identifying an optimal profile under ideal operating conditions and empirical data.en-US
dc.descriptionEste artículo presenta un sistema de control para reducir el consumo de hidrogeno para una celda de combustible de Membrana de Intercambio Protónico, considerando incertidumbres paramétricas. El sistema de control incluye un modelo no lineal en el espacio de estado para la celda de combustible, un filtro de Kalman/estimador, un regulador óptimo cuadrático y algoritmo de seguimiento de puntos de máxima potencia (MPP). El objetivo de control es suministrar la potencia de carga demandada, evitando el agotamiento del oxígeno y minimizando el consumo de hidrógeno por medio de un algoritmo de Perturbación y Observación (P&O). El desempeño del sistema de control es evaluado ante incertidumbres paramétricas al simular escenarios de perdida de desempeño como producto del envejecimiento del compresor. De esta forma, dos escenarios fueron simulados: un primer escenario simula un error entre la ganancia (de lazo abierto) del compresor de la celda de combustible y la del modelo; y un segundo escenario, con un error entre la corriente de pérdidas y del compresor de la celda de combustible con respecto al modelo. Los resultados de simulación muestran que el filtro Kalman/estimador logra contrarrestar las incertidumbres producidas por los cambios paramétricos del sistema. Igualmente, el algoritmo MPP logra suministrar el voltaje del compresor adecuado sin necesidad de un perfil óptimo en condiciones ideales.es-ES
dc.formatapplication/pdf
dc.languageeng
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/59/55
dc.relation/*ref*/J. T. Pukrushpan, A. G. Stefanopoulou, and Huei Peng, “Control of fuel cell breathing,” IEEE Control Syst. Mag., vol. 24, no. 2, pp. 30–46, Apr. 2004. [2] C. A. Ramos-Paja, C. Bordons, A. Romero, R. Giral, and L. Martinez-Salamero, “Minimum Fuel Consumption Strategy for PEM Fuel Cells,” IEEE Trans. Ind. Electron., vol. 56, no. 3, pp. 685–696, Mar. 2009. [3] C. Bordons, A. Arce, and A. J. del Real, “Constrained predictive control strategies for PEM fuel cells,” in 2006 American Control Conference, 2006, p. 6 pp. [4] M. A. Danzer, J. Wilhelm, H. Aschemann, and E. P. Hofer, “Model-based control of cathode pressure and oxygen excess ratio of a PEM fuel cell system,” J. Power Sources, vol. 176, no. 2, pp. 515–522, Feb. 2008. [5] I. Matraji, S. Laghrouche, S. Jemei, and M. Wack, “Robust control of the PEM fuel cell air-feed system via sub-optimal second order sliding mode,” Appl. Energy, vol. 104, pp. 945–957, Apr. 2013. [6] W. Garcia-Gabin, F. Dorado, and C. Bordons, “Real-time implementation of a sliding mode controller for air supply on a PEM fuel cell,” J. Process Control, vol. 20, no. 3, pp. 325–336, Mar. 2010. [7] S. Laghrouche, M. Harmouche, F. S. Ahmed, and Y. Chitour, “Control of PEMFC Air-Feed System Using Lyapunov-Based Robust and Adaptive Higher Order Sliding Mode Control,” IEEE Trans. Control Syst. Technol., vol. 23, no. 4, pp. 1594–1601, Jul. 2015. [8] J. K. Gruber, C. Bordons, and A. Oliva, “Nonlinear MPC for the airflow in a PEM fuel cell using a Volterra series model,” Control Eng. Pract., vol. 20, no. 2, pp. 205–217, Feb. 2012. [9] C. A. Ramos-Paja, R. Giral, L. Martinez-Salamero, J. Romano, A. Romero, and G. Spagnuolo, “A PEM Fuel-Cell Model Featuring Oxygen-Excess-Ratio Estimation and Power-Electronics Interaction,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 1914–1924, Jun. 2010. [10] C. A. Ramos-Paja, G. Spagnuolo, G. Petrone, R. Giral, and A. Romero, “Fuel cell MPPT for fuel consumption optimization,” in Proceedings of 2010 IEEE International Symposium on Circuits and Systems, 2010, pp. 2199–2202. [11] C. A. Ramos-Paja, G. Spagnuolo, G. Petrone, and E. Mamarelis, “A perturbation strategy for fuel consumption minimization in polymer electrolyte membrane fuel cells: Analysis, Design and FPGA implementation,” Appl. Energy, vol. 119, pp. 21–32, Apr. 2014. [12] A. Giustiniani, G. Petrone, C. Pianese, M. Sorrentino, G. Spagnuolo, and M. Vitelli, “PEM Fuel Cells Control by means of the Perturb and Observe Technique,” in IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics, 2006, pp. 4349–4354. [13] J. Lu and A. Zahedi, “Air supply control for maximum efficiency point tracking in fuel cell systems,” J. Renew. Sustain. Energy, vol. 4, no. 3, p. 33106, May 2012. [14] X. D. Xue, K. W. E. Cheng, and D. Sutanto, “Unified mathematical modelling of steady-state and dynamic voltage–current characteristics for PEM fuel cells,” Electrochim. Acta, vol. 52, no. 3, pp. 1135–1144, Nov. 2006. [15] S. O. T. Ogaji, R. Singh, P. Pilidis, and M. Diacakis, “Modelling fuel cell performance using artificial intelligence,” J. Power Sources, vol. 154, no. 1, pp. 192–197, Mar. 2006. [16] A. Hernandez, D. Hissel, and R. Outbib, “Non Linear State Space Modelling of a PEMFC,” Fuel Cells, vol. 6, no. 1, pp. 38–46, Feb. 2006. [17] J. Golbert and D. R. Lewin, “Model-based control of fuel cells: (1) Regulatory control,” J. Power Sources, vol. 135, no. 1–2, pp. 135–151, Sep. 2004. [18] J. Golbert and D. R. Lewin, “Model-based control of fuel cells (2): Optimal efficiency,” J. Power Sources, vol. 173, no. 1, pp. 298–309, Nov. 2007. [19] M. J. Khan and M. T. Iqbal, “Modelling and Analysis of Electro-chemical, Thermal, and Reactant Flow Dynamics for a PEM Fuel Cell System,” Fuel Cells, vol. 5, no. 4, pp. 463–475, Dec. 2005. [20] R. Rios, C. Ramos, and J. Espinosa, “Non-Linear State Space Model and Control Strategy for Pem Fuel Cell Systems,” Dyna, vol. 78, no. 166, pp. 60–67, 2011. [21] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of Perturb and Observe Maximum Power Point Tracking Method,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963–973, Jul. 2005. [22] N. Femia, P. G., G. Spagnuolo, and M. Vitelli, “Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems (Femia, N. et al; 2013) [Book News],” IEEE Ind. Electron. Mag., vol. 7, no. 3, pp. 66–67, Sep. 2013. [23] D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear approaches, 1st ed. Hoboken, N.J.: Wiley-Interscience, 2006.
dc.rightsCopyright (c) 2017 Tecno Lógicasen-US
dc.sourceTecnoLógicas; Vol. 19 No. 37 (2016); 45-59en-US
dc.sourceTecnoLógicas; Vol. 19 Núm. 37 (2016); 45-59es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectPEM fuel cellsen-US
dc.subjectoxygen excess ratioen-US
dc.subjectKalman filteren-US
dc.subjectparametric uncertaintyen-US
dc.subjectPerturb & Observe.en-US
dc.subjectCeldas de combustible de membrana de intercambio Protónico-PEMes-ES
dc.subjectexceso de razón de oxígenoes-ES
dc.subjectfiltro de Kalmanes-ES
dc.subjectincertidumbre paramétricaes-ES
dc.subjectperturbaciónes-ES
dc.subjectobservaciónes-ES
dc.titleA control system for reducing the hydrogen consumption of PEM fuel cells under parametric uncertaintiesen-US
dc.titleSistema de control para reducir el consumo de hidrógeno en celdas de combustible PEM considerando incertidumbres paramétricases-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem