Mostrar el registro sencillo del ítem

Análisis numérico de la influencia de la granulometría para la generación de flujos secos de detritos mediante el DEM

dc.creatorArévalo-Mendoza, Gerardo
dc.creatorRamos-Cañón, Alfonso M.
dc.creatorPrada-Sarmiento, Luis F.
dc.date2017-02-21
dc.date.accessioned2021-03-18T21:06:41Z
dc.date.available2021-03-18T21:06:41Z
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/576
dc.identifier10.22430/22565337.576
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/11668
dc.descriptionDebris flow is a process of granular nature that has been widely analysed with methodologies based upon continuum mechanics. However, those approaches do not take into account the real granular condition of the soil. Grain size distribution exerts an important control on the movement of debris flows. This behaviour can be studied by analyzing three variables: maximum tilt angle (θ), kinetic energy (Ek) and flow depth (Fd). These variables allow to obtain a deeper insight into the conditions that trigger the failure of slopes and its subsequent capacity of damage. This research resorts to the use of the discrete element technique, developed by [1], performing a parametrical study of the parameters controlling grain size distributions like: mean size (d50), coefficient of curvature (Cu) and maximum size (dmax). The results showed an important influence and also a strong interaction between Ek and Fd on the onset of granular flows. The angle θ reached on the surface has a variation less than 5º with extreme values of d50. Results reported herein, allow to recognize the influence of grain size distribution on the triggering of slides of granular materials.en-US
dc.descriptionEl flujo de detritos es un proceso de naturaleza granular que ha sido abordado ampliamente bajo metodologías basadas en el medio continuo. Sin embargo, estas aproximaciones simplifican la realidad granular del suelo. Como material granular, la granulometría puede gobernar el comportamiento de este movimiento desagregado de masa. Es posible estudiar este comportamiento en términos del ángulo máximo alcanzado (θ), la energía cinética (Ek) y la profundidad de flujo (Fd) con el fin de establecer condiciones potenciales de falla, así como sus capacidades de daño. Para abordarlo se hace uso del método de elementos discretos, desarrollado por [1], bajo un estudio paramétrico en el cual se varían los parámetros de la granulometría: el tamaño medio del grano (d50), el coeficiente de curvatura (Cu) y el tamaño máximo de la muestra (dmax). Los resultados muestran que existe una influencia apreciable y una estrecha relación en los parámetros Ek y Fd. Con respecto al θ alcanzado en superficie se tiene una variación de menos de 5° para valores extremos de d50. Con esto, se muestra que la granulometría puede ser un factor importante que influye en la generación de flujos de detritos y se encuentran relacionadas cercanamente.es-ES
dc.formatapplication/pdf
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/576/603
dc.relation/*ref*/P. A. Cundall and O. D. L. Strack, “A discrete numerical model for granular assemblies,” Géotechnique, vol. 29, no. 1, pp. 47–65, Mar. 1979. [2] M. Jakob, O. Hungr, and D. M. Jakob, Debris-flow hazards and related phenomena, vol. 739. Springer, 2005. [3] L. S. Blake and E. H. Probst, Civil engineer’s reference book. Newnes-Butterworths., 1975. [4] J. Suarez Díaz, Deslizamientos y estabilidad de taludes en zonas tropicales. Edición UIS, 1998. [5] D. Cornforth, Landslides in practice: investigation, analysis, and remedial/preventative options in soils. Wiley, 2005. [6] M. A. Maidana, M. E. Infantes, J. B. Lorente, M. y A. Departamento de Inginiería Hidráulica, and U. P. de C. Laboratorio de Inginiería Marítima, “Desarrollo de un modelo numérico 3D en elementos finitos para las ecuaciones de Navier-Stokes: aplicaciones oceanográficas,” Universidad Politécnica de Cataluña, 2007. [7] C. O’Sullivan, Particulate discrete element modelling. Taylor & Francis, 2011. [8] A. Phillip Grima and P. Wilhelm Wypych, “Discrete element simulations of granular pile formation,” Eng. Comput., vol. 28, no. 3, pp. 314–339, Apr. 2011. [9] P. Gajjar, K. van der Vaart, A. R. Thornton, C. G. Johnson, C. Ancey, and J. M. N. T. Gray, “Asymmetric breaking size-segregation waves in dense granular free-surface flows,” J. Fluid Mech., vol. 794, pp. 460–505, May 2016. [10] A. Leonardi, F. K. Wittel, M. Mendoza, R. Vetter, and H. J. Herrmann, “Particle-Fluid-Structure Interaction for Debris Flow Impact on Flexible Barriers,” Comput. Civ. Infrastruct. Eng., vol. 31, no. 5, pp. 323–333, May 2016. [11] C. Y. Lu, C. L. Tang, Y. C. Chan, J. C. Hu, and C. C. Chi, “Forecasting landslide hazard by the 3D discrete element method: A case study of the unstable slope in the Lushan hot spring district, central Taiwan,” Eng. Geol., vol. 183, pp. 14–30, Dec. 2014. [12] Q. Deng, L. Gong, L. Zhang, R. Yuan, Y. Xue, X. Geng, and S. Hu, “Simulating dynamic processes and hypermobility mechanisms of the Wenjiagou rock avalanche triggered by the 2008 Wenchuan earthquake using discrete element modelling,” Bull. Eng. Geol. Environ., pp. 1–14, Jul. 2016. [13] B. Chareyre, D. Marzougui, and J. Chauchat, “Can we reduce debris flow to an equivalent one-phase flow?,” IOP Conf. Ser. Earth Environ. Sci., vol. 26, no. 1, p. 12009, Sep. 2015. [14] S. Longo and A. Lamberti, “Grain shear flow in a rotating drum,” Exp. Fluids, vol. 32, no. 3, pp. 313–325, Mar. 2002. [15] R. Y. Yang, A. B. Yu, L. McElroy, and J. Bao, “Numerical simulation of particle dynamics in different flow regimes in a rotating drum,” Powder Technol., vol. 188, no. 2, pp. 170–177, Dec. 2008. [16] G. G. D. Zhou and C. W. W. Ng, “Numerical investigation of reverse segregation in debris flows by DEM,” Granul. Matter, vol. 12, no. 5, pp. 507–516, Oct. 2010. [17] J. R. Third, D. M. Scott, S. A. Scott, and C. R. Müller, “Tangential velocity profiles of granular material within horizontal rotating cylinders modelled using the DEM,” Granul. Matter, vol. 12, no. 6, pp. 587–595, Dec. 2010. [18] S.-C. Hsu, C.-H. Jaing, and N.-C. Chen, “Modeling of Debris Flow Using Distinct Element Method,” in IACGE 2013, 2013, pp. 713–720. [19] R. Chand, M. A. Khaskheli, A. Qadir, B. Ge, and Q. Shi, “Discrete particle simulation of radial segregation in horizontally rotating drum: Effects of drum-length and non-rotating end-plates,” Phys. A Stat. Mech. its Appl., vol. 391, no. 20, pp. 4590–4596, Oct. 2012. [20] J. Xu, H. Qi, X. Fang, L. Lu, W. Ge, X. Wang, M. Xu, F. Chen, X. He, and J. Li, “Quasi-real-time simulation of rotating drum using discrete element method with parallel GPU computing,” Particuology, vol. 9, no. 4, pp. 446–450, Aug. 2011. [21] X. Liu, W. Ge, Y. Xiao, and J. Li, “Granular flow in a rotating drum with gaps in the side wall,” Powder Technol., vol. 182, no. 2, pp. 241–249, Feb. 2008. [22] H. T. Chou, C. F. Lee, Y. C. Chung, and S. S. Hsiau, “Discrete element modelling and experimental validation for the falling process of dry granular steps,” Powder Technol., vol. 231, no. 0, pp. 122–134, Aug. 2012. [23] P. Y. Liu, R. Y. Yang, and A. B. Yu, “DEM study of the transverse mixing of wet particles in rotating drums,” Chem. Eng. Sci., vol. 86, no. 0, pp. 99–107, Feb. 2013. [24] K. L. Johnson, Contact mechanics, 1st ed. Cambridge university press, 1987. [25] H. D. R. D. Mindlin, “Elastic spheres in contact under varying oblique forces,” J. Appl. Mech., vol. 20, pp. 327–344, 1953. [26] A. A. Serrano and J. M. Rodríguez-Ortíz, “A contribution to the mechanics of heterogeneous granular media.,” 2013. [27] J. M. Rodríguez-Ortíz, “Estudio del comportamiento de medios granulares heterogéneos mediante modelos discontinuos analógicos y matemáticos,” Universidad Politécnica de Madrid, 1974. [28] C. O’Sullivan and J. D. Bray, “Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme,” Eng. Comput., vol. 21, no. 2/3/4, pp. 278–303, Mar. 2004. [29] T. Belytschko, B. Moran, and W. K. Liu, Nonlinear finite element analysis for continua and structures, vol. 1. Wiley, 1999. [30] A. Wu, Y. Sun, and X. Liu, Granular dynamic theory and its applications. Springer, 2008. [31] R. B. Canelas, A. J. C. Crespo, J. M. Domínguez, R. M. L. Ferreira, and M. Gómez-Gesteira, “SPH–DCDEM model for arbitrary geometries in free surface solid–fluid flows,” Comput. Phys. Commun., vol. 202, pp. 131–140, May 2016.
dc.rightsCopyright (c) 2017 Tecno Lógicasen-US
dc.sourceTecnoLógicas; Vol. 20 No. 38 (2017); 95-106en-US
dc.sourceTecnoLógicas; Vol. 20 Núm. 38 (2017); 95-106es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectDebris flowen-US
dc.subjectgrain size distributionen-US
dc.subjectdiscrete element methoden-US
dc.subjectrotating drumen-US
dc.subjectdepth flowen-US
dc.subjectFlujo de detritoses-ES
dc.subjectgranulometríaes-ES
dc.subjectmétodo de elementos discretoses-ES
dc.subjecttambor rotadores-ES
dc.subjectprofundidad de flujo.es-ES
dc.titleNumerical analysis of the grain size distribution in the activation of dry debris flow by means of DEMen-US
dc.titleAnálisis numérico de la influencia de la granulometría para la generación de flujos secos de detritos mediante el DEMes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem