Mostrar el registro sencillo del ítem

Utilización de un residuo mineral industrial como catalizador en la hidroconversión de dibenciléter y de un carbón subbituminoso colombiano

dc.creatorSánchez-Castañeda, Juliana
dc.creatorMoreno-Lopera, Andrés
dc.creatorRuiz-Machado, Wilson A.
dc.date2016-01-30
dc.date.accessioned2021-03-18T21:06:44Z
dc.date.available2021-03-18T21:06:44Z
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/594
dc.identifier10.22430/22565337.594
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/11684
dc.descriptionAn industrial mineral waste produced in the aluminum sulphate industry was selected as a low cost catalyst precursor. This material has been active in dibenzylether hydroconversion, as a model compound of C-O linkages in coal. Besides, it was used in the hydroconversion of a colombian subbituminous coal. The mineral waste and a commercial iron oxide (as reference material) were sulfided in order to produce iron sulfide, pyrrhotite type (Fe1-xS), which is the active phase in hydroconversion reactions. The solids were characterized by X-ray fluorescence, X-ray diffraction, Raman spectroscopy and scanning electron microscopy. Catalytic tests with the model compound and coal were carried out at 5 MPa of H2, temperatures between 240 °C and 400 °C and reaction times were 0.5 h or 1 h. The results showed a higher activity of the industrial mineral waste compared with the reference material in the dibenzylether C-O bond cleavage. These kind of bonds are responsible for asphalthenes and preasphalthenes assembly in the molecular coal structure. In addition, coal conversion in presence of catalysts was 83.9 %, this value was 1.8 times higher than conversion without catalyst. Results show the potential of the industrial mineral waste to be used as catalyst in the hydroconversion of coal due to its good activity and low cost.en-US
dc.descriptionUn residuo mineral industrial, proveniente de la producción de sulfato de aluminio, se utilizó como precursor para la preparación de un catalizador de bajo costo, activo en reacciones de hidroconversión de dibenciléter, como compuesto modelo de las uniones C-O en el carbón, y de un carbón subbtituminoso colombiano. El residuo mineral y un óxido de hierro comercial (material de referencia) se sometieron a un proceso de sulfuración con el propósito de generar un sulfuro de hierro tipo pirrotita (Fe1-xS), el cual es la fase activa del hierro en reacciones de hidroconversión. Los sólidos se caracterizaron por difracción de rayos X, fluorescencia de rayos X, espectroscopía Raman y microscopía electrónica de barrido. Las pruebas de actividad catalítica, con el compuesto modelo y el carbón, se realizaron a 5 MPa H2, a temperaturas entre 240 °C y 400 °C y tiempos de reacción de 0,5 h y 1 h. Los resultados mostraron que el residuo mineral industrial fue más activo que el material de referencia y que presentó alta actividad hacia la ruptura de los enlaces C-O en el dibenciléter, siendo estos los enlaces responsables del ensamble de asfaltenos y preasfaltenos en la estructura molecular del carbón. Adicionalmente, la conversión del carbón incrementó significativamente en presencia del residuo mineral sulfurado alcanzando un valor de 83,9 %, valor 1,8 veces mayor que para la reacción sin catalizador, evidenciando el potencial del residuo mineral para ser usado como catalizador en la hidroconversión del carbón, debido a su buena actividad y bajo costo.es-ES
dc.formatapplication/pdf
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/594/621
dc.relation/*ref*/W. Liu, X. Chen, W. Li, Y. Yu, and K. Yan, “Environmental assessment, management and utilization of red mud in China,” J. Clean. Prod., vol. 84, pp. 606–610, Dec. 2014. [2] S. C. Kim, S. W. Nahm, and Y.-K. Park, “Property and performance of red mud-based catalysts for the complete oxidation of volatile organic compounds,” J. Hazard. Mater., vol. 300, pp. 104–113, Dec. 2015. [3] Y. Huang, G. Han, J. Liu, and W. Wang, “A facile disposal of Bayer red mud based on selective flocculation desliming with organic humics,” J. Hazard. Mater., vol. 301, pp. 46–55, Jan. 2016. [4] Y. Liu and R. Naidu, “Hidden values in bauxite residue (red mud): Recovery of metals,” Waste Manag., vol. 34, no. 12, pp. 2662–2673, Dec. 2014. [5] G. Power, M. Gräfe, and C. Klauber, “Bauxite residue issues: I. Current management, disposal and storage practices,” Hydrometallurgy, vol. 108, no. 1–2, pp. 33–45, Jun. 2011. [6] C. Klauber, M. Gräfe, and G. Power, “Bauxite residue issues: II. options for residue utilization,” Hydrometallurgy, vol. 108, no. 1–2, pp. 11–32, Jun. 2011. [7] A. Bhattacharyya and B. J. Mezza, “patente process for using iron oxide and alumina for slurry hydrocracking.pdf.” 2012. [8] J.-H. Lv, X.-Y. Wei, Y.-H. Wang, L.-C. Yu, D.-D. Zhang, X.-M. Yue, T.-M. Wang, J. Liu, Z.-M. Zong, X. Fan, and Y.-P. Zhao, “Light fraction from catalytic hydroconversion of two Chinese coals in cyclohexane over a solid acid,” Fuel Process. Technol., vol. 129, pp. 162–167, Jan. 2015. [9] N. Shah, J. Zhao, F. E. Huggins, and G. P. Huffman, “In Situ XAFS Spectroscopic Studies of Direct Coal Liquefaction Catalysts,” Energy & Fuels, vol. 10, no. 2, pp. 417–420, Jan. 1996. [10] S. Vasireddy, B. Morreale, A. Cugini, C. Song, and J. J. Spivey, “Clean liquid fuels from direct coal liquefaction: chemistry, catalysis, technological status and challenges,” Energy Environ. Sci., vol. 4, no. 2, pp. 311–345, 2011. [11] T. Kaneko, K. Tazawa, T. Koyama, K. Satou, K. Shimasaki, and Y. Kageyama, “Transformation of Iron Catalyst to the Active Phase in Coal Liquefaction,” Energy & Fuels, vol. 12, no. 5, pp. 897–904, Sep. 1998. [12] D.-D. Zhang, Z.-M. Zong, J. Liu, Y.-H. Wang, L.-C. Yu, J.-H. Lv, T.-M. Wang, X.-Y. Wei, Z.-H. Wei, and Y. Li, “Catalytic hydroconversion of Geting bituminous coal over FeNi–S/γ-Al2O3,” Fuel Process. Technol., vol. 133, pp. 195–201, May 2015. [13] Z. Liu, S. Shi, and Y. Li, “Coal liquefaction technologies—Development in China and challenges in chemical reaction engineering,” Chem. Eng. Sci., vol. 65, no. 1, pp. 12–17, Jan. 2010. [14] Z. Wang, H. Shui, Z. Lei, S. Ren, S. Kang, H. Zhou, X. Gu, and J. Gao, “Study of the preasphaltenes of coal liquefaction and its hydro-conversion kinetics catalyzed by SO42−/ZrO2,” Fuel Process. Technol., vol. 92, no. 10, pp. 1830–1835, Oct. 2011. [15] I. Merdrignac and A. Quignard, “Hydroconversion of coals,” in Catalysis by transition metal sulphides: From molecular theory to industrial application, 2013, pp. 758–776. [16] N. Ikenaga, Y. Kobayashi, S. Saeki, T. Sakota, Y. Watanabe, H. Yamada, and T. Suzuki, “Hydrogen-Transfer Reaction of Coal Model Compounds in Tetralin with Dispersed Catalysts,” Energy & Fuels, vol. 8, no. 4, pp. 947–952, Jul. 1994. [17] J. P. Mathews and A. L. Chaffee, “The molecular representations of coal – A review,” Fuel, vol. 96, pp. 1–14, Jun. 2012. [18] S. Sushil and V. S. Batra, “Catalytic applications of red mud, an aluminium industry waste: A review,” Appl. Catal. B Environ., vol. 81, no. 1–2, pp. 64–77, May 2008. [19] M. K. Mardkhe, K. Keyvanloo, C. H. Bartholomew, W. C. Hecker, T. M. Alam, and B. F. Woodfield, “Acid site properties of thermally stable, silica-doped alumina as a function of silica/alumina ratio and calcination temperature,” Appl. Catal. A Gen., vol. 482, pp. 16–23, Jul. 2014. [20] M. P. Pomiès, G. Morin, and C. Vignaud, “XRD study of the goethite-hematite transformation: Application to the identification of heated prehistoric pigments,” Eur. J. Solid State Inorg. Chem., vol. 35, no. 1, pp. 9–25, Jan. 1998. [21] A. Malki, Z. Mekhalif, S. Detriche, G. Fonder, A. Boumaza, and A. Djelloul, “Calcination products of gibbsite studied by X-ray diffraction, XPS and solid-state NMR,” J. Solid State Chem., vol. 215, pp. 8–15, Jul. 2014. [22] D. L. A. de Faria, S. Venâncio Silva, and M. T. de Oliveira, “Raman microspectroscopy of some iron oxides and oxyhydroxides,” J. Raman Spectrosc., vol. 28, no. 11, pp. 873–878, Nov. 1997. [23] T. K. T. Ninh, L. Massin, D. Laurenti, and M. Vrinat, “A new approach in the evaluation of the support effect for NiMo hydrodesulfurization catalysts,” Appl. Catal. A Gen., vol. 407, no. 1–2, pp. 29–39, Nov. 2011. [24] C.-E. Hédoire, C. Louis, A. Davidson, M. Breysse, F. Maugé, and M. Vrinat, “Support effect in hydrotreating catalysts: hydrogenation properties of molybdenum sulfide supported on β-zeolites of various acidities,” J. Catal., vol. 220, no. 2, pp. 433–441, Dec. 2003. [25] J. J. Vlieger, “Aspects of the chemistry of hydrogen donor solvent coal liquefaction,” Universidad de Tecnologíca de Delft, 1988. [26] K. Chiba, H. Tagaya, T. Yamauchi, and S. Sato, “Effect of solvents on thermal cracking of model compounds typical of coal,” Ind. Eng. Chem. Res., vol. 30, no. 6, pp. 1141–1145, Jun. 1991. [27] T. Gauthier, P. Danialfortain, I. Merdrignac, I. Guibard, and A. Quoineaud, “Studies on the evolution of asphaltene structure during hydroconversion of petroleum residues,” Catal. Today, vol. 130, no. 2–4, pp. 429–438, Jan. 2008. [28] X. Li, H. Hu, L. Jin, S. Hu, and B. Wu, “Approach for promoting liquid yield in direct liquefaction of Shenhua coal,” Fuel Process. Technol., vol. 89, no. 11, pp. 1090–1095, Nov. 2008. [29] H. Hu, G. Sha, and G. Chen, “Effect of solvent swelling on liquefaction of Xinglong coal at less severe conditions,” Fuel Process. Technol., vol. 68, no. 1, pp. 33–43, Oct. 2000. [30] I. de Marco Rodriguez, M. J. Chomón, B. Caballero, P. L. Arias, and J. A. Legarreta, “Liquefaction behaviour of a Spanish subbituminous A coal under different conditions of hydrogen availability,” Fuel Process. Technol., vol. 58, no. 1, pp. 17–24, Nov. 1998. [31] I. Ceyhun, “Kinetic Studies on Karlıova Coal 1,” Theor. Found. Chem. Eng., vol. 37, no. 4, pp. 416–420, 2003.
dc.rightsCopyright (c) 2017 Tecno Lógicasen-US
dc.sourceTecnoLógicas; Vol. 19 No. 36 (2016); 91-102en-US
dc.sourceTecnoLógicas; Vol. 19 Núm. 36 (2016); 91-102es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectBauxiteen-US
dc.subjectiron sulfidesen-US
dc.subjectdibenzyletheren-US
dc.subjecthydroconversionen-US
dc.subjectcoalen-US
dc.subjectBauxitaes-ES
dc.subjectsulfuros de hierroes-ES
dc.subjectdibenciléteres-ES
dc.subjecthidroconversiónes-ES
dc.subjectcarbónes-ES
dc.titleThe use of an industrial mineral waste as catalyst in the hydroconversion of dibenzylether and a colombian subbituminous coalen-US
dc.titleUtilización de un residuo mineral industrial como catalizador en la hidroconversión de dibenciléter y de un carbón subbituminoso colombianoes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem