Mostrar el registro sencillo del ítem

Uso de la perforación dinámica como un método alternativo para determinar el comportamiento mecánico de materiales refractarios

dc.creatorZuluaga-Castrillón, Daniel
dc.creatorHernández-Ruiz, Juan F.
dc.creatorVargas-Galvis, Fabio
dc.creatorLópez-Gómez, María E.
dc.creatorPalacio-Espinosa, Claudia C.
dc.date2017-05-02
dc.date.accessioned2021-03-18T21:06:46Z
dc.date.available2021-03-18T21:06:46Z
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/694
dc.identifier10.22430/22565337.694
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/11693
dc.descriptionCeramic materials hardness is usually determined by Vickers microindentation, which requires rigorous sample preparation and highly demanding analysis of traces turning this method difficult to use in industrial applications. This research is focused to correlate Vickers Hardness to drilling resistance by a hard-tipped drill-bit on alumina, alumina-zirconia-silica (AZS) and alumina-chromite refractories bricks. Alumina and AZS bricks were manufactured by electromelting process leading to obtain highly densified microstructures, while alumina-chromite bricks were manufactured by pressing and sintering which conducts to lower densification and particles cohesion within the bricks microstructure. Alumina and AZS refractories measured hardness is 1506.00 ± 99.71 HV1,5N (15.10 ± 0.90 GPa) and 1028.00 ± 95.49HV2,7N (10.30 ± 0.90 GPa) respectively, which is in contrast with the low measured hardness on alumina-chromite bricks of 54.00 ± 2.00 HV50N (0.54 ± 0.02 GPa) despite of the high hardness of alumina and chromite used as feedstock maybe due to a low cohesion between the particles. Drilling resistance results showed a well-fitted behavior regarding the measured Vickers hardness then the drilling resistance test is useful to predict the hardness of highly densified as well as of friable ceramic materials.en-US
dc.descriptionLa dureza de los materiales cerámicos generalmente se determina mediante microindentación Vickers, para lo cual la muestra debe ser rigurosamente pulida y se deben analizar múltiples huellas para que el resultado sea representativo de las propiedades mecánicas del material, dificultando su uso en el ámbito industrial. En este trabajo se relacionó la dureza Vickers de ladrillos refractarios de alúmina, alúminacircona-sílice (AZS) y de alúmina-cromita, con la resistencia que tienen los mismos a ser perforados por una broca para concreto con punta de carburo de tungsteno. Los refractarios de alúmina y de AZS estudiados fueron fabricados por electrofusión, lo que les confiere alta densificación, mientras que los de alúmina-cromita fueron manufacturados mediante prensado y sinterizado y, por lo tanto, la cohesión entre las partículas que los constituyen y su densificación es baja. La dureza medida para el ladrillo de alúmina y el de AZS es de 1506,00 ± 99,71 HV1,5N (15,10 ± 0,90 GPa) y 1028,00 ± 95,49 HV2,7N (10,30 ± 0,90 GPa) respectivamente, mientras que para el de alúminacromita la dureza es sorprendentemente baja, tan solo de 54,00 ± 2,00 HV50N (0,54±0,02 GPa), a pesar de que este material está constituido por partículas altamente duras, lo cual es producto de la baja cohesión de dichas partículas. Los resultados obtenidos indican que existe buena concordancia entre la resistencia a la perforación y la dureza Vickers de los ladrillos estudiados, por lo que el ensayo de perforación mecánica puede ser utilizado para predecir la dureza tanto en materiales cerámicos bien densificados, como en aquellos poco densificados.es-ES
dc.formatapplication/pdf
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/694/676
dc.relation/*ref*/REFERENCIAS [1] C. Barry and G. M. Norton, Ceramic Materials: Science and Engineering. Berlin: Springer, 2013. [2] R. B. Heimann, Classic and Advanced Ceramics: From Fundamentals to Applications. Weinheim, Germany: WileyVCH Verlag GmbH & Co. KGaA, 2010. [3] US. Bureau of Labor Statistics, “Export (Harmonized System): Stone, plaster, cement, asbestos, ceramics, glass etc.,” 2016. [Online]. Available: https://research.stlouisfed.org/fred2/series/id xiii. [Accessed: 13-May-2016]. [4] G. D. Quinn, “Indentation Hardness Testing of Ceramics,” in ASM Handbook , Mechanical Testing and Evaluation (ASM International), vol. 8, H. K. and D. Medlin, Ed. National Institute of Standards and Technology, 2000, pp. 244–251. [5] M. Rahman, J. Haider, T. Akter, and M. S. J. Hashmi, “Techniques for Assessing the Properties of Advanced Ceramic Materials,” in Comprehensive Materials Processing, Elsevier, Ed. Amsterdam: Elsevier, 2014, pp. 3–34. [6] D. Singh, J. Salem, A. Gyekenyesi, and M. Halbig, Mechanical Properties and Performance of Engineering Ceramics and Composites VII, vol. 35, no. 2. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. [7] I. McColm, Ceramic Hardness. New York: Springer, 1990. [8] R. C. Bradt, D. Munz, M. SakaiK., and W. White, Fracture Mechanics of Ceramics, Volume 2. Boston, MA: Springer US, 2005. [9] E. Medvedovski, Ceramic Armor and Armor Systems, 151st ed. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. [10] Z. Chen, X. Wang, A. Atkinson, and N. Brandon, “Spherical indentation of porous ceramics: Elasticity and hardness,” J. Eur. Ceram. Soc., vol. 36, no. 6, pp. 1435–1445, May 2016. [11] D. Chicot, H. Ageorges, M. Voda, G. Louis, M. A. Ben Dhia, C. C. Palacio, and S. Kossman, “Hardness of thermal sprayed coatings: Relevance of the scale of measurement,” Surf. Coatings Technol., vol. 268, pp. 173–179, Apr. 2015. [12] F. M. Hurtado, A. G. Hernández, M. E. López Gómez, and H. Ageorges, “Estudio de la estructura y las propiedades mecánicas en un recubrimiento de circona estabilizada con 8% en mol de itria elaborado por proyección térmica por plasma a partir de suspensiones,” Matéria (Rio Janeiro), vol. 21, no. 1, pp. 49–60, Mar. 2016. [13] F. Vargas, “Élaboration de couches céramiques épaisses à structures micrométriques et nanométriques par projection thermiques pour des applications tribologiques.,” University of Limoges, 2010. [14] ASTM, “C1326 − 13 Standard Standard Test Method for Knoop Indentation Hardness of Advanced Ceramics 1,” no. March. pp. 1–10, 2003. [15] ASTM, “C1327 − 15 Standard Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics 1,” no. March. pp. 1–10, 2003. [16] M. Pamplona, M. Kocher, R. Snethlage, and L. A. Barros, “Drilling resistance: overview and outlook [Bohrhärtemessungen: Übersicht und Ausblick],” Zeitschrift der Dtsch. Gesellschaft für Geowissenschaften, vol. 158, no. 3, pp. 665–679, Sep. 2007. [17] C. Alfes, W. Breit, and P. Schiessl, “Hardness testing for the measurement of stone degradation.,” in Proc. 7th Int. Cong. on Deterioration and Conservation of Stone, 1992, pp. 771–780. [18] J. Delgado Rodrigues and D. Costa, “A new method for data correction in drill resistance tests for the effect of drill bit wear,” Int. J. Restor., vol. 10, no. 3, pp. 1–18, 2004. [19] J. M. Mimoso and D. M. R. Costa, “A new DRMS Drilling Technique for the Laboratory,” in International Conference on "Non Destructive Investigations and Micronalysis for the Diagnostics and Conservation of the Cultural and Environmental Heritage., 2005, vol. 8, pp. 1– 13. [20] E. M. Winkler, Stone: Properties Durability in Man’s Environment, vol. 53, no. 9. Vienna: Springer Vienna, 1973. [21] C. C. Palacio, H. Ageorges, F. Vargas, and A. F. Díaz, “Effect of the mechanical properties on drilling resistance of Al2O3–TiO2 coatings manufactured by atmospheric plasma spraying,” Surf. Coatings Technol., vol. 220, pp. 144–148, Apr. 2013. [22] A. F. Díaz Guarín, “Evolución del desgaste producido mediante perforación mecánica en recubrimientos de alúmina/óxido de titanio obtenidos mediante proyección térmica por plasma, sobre sustratos de aluminio,” Uso de la perforación dinámica como un método alternativo para determinar el comportamiento mecánico de materiales refractarios TecnoLógicas, Vol. 20, No. 39, mayo - agosto de 2017 Universidad de Antioquia, 2014. [23] K. Aristizabal, O. Rojas, F. Vargas, A. F. Díaz, and H. Ageorges, “Efecto del afilado de la broca sobre la resistencia a la perforación de recubrimientos de AL2O3 – TiO2 elaborados mediante proyección térmica por plasma,” Rev. Colomb. Mater., no. 5, pp. 353– 360, 2013. [24] R. E. Chinn, “Image Analysis,” in Ceramography Preparation and analysis of ceramic microstructures, Wiley, Ed. New York: Wiley John & Sons, 2002, pp. 189–198. [25] “Carbide Masonry Drills.” 2015. [online]. Available: http://www.tatoolsonline.com/uploads/266/saf ety_data_carbide_masonry_tools.pdf. [accessed: 21-sep-2016]. [26] J. Luo and R. Stevens, “Porosity-dependence of elastic moduli and hardness of 3Y-TZP ceramics,” Ceram. Int., vol. 25, no. 3, pp. 281–286, Apr. 1999. [27] K. A. Habib, J. J. Saura, C. Ferrer, M. S. Damra, E. Giménez, and L. Cabedo, “Comparison of flame sprayed Al2O3/TiO2 coatings: Their microstructure, mechanical properties and tribology behavior,” Surf. Coatings Technol., vol. 201, no. 3–4, pp. 1436–1443, Oct. 2006. [28] J. Lin and J. Duh, “Fracture toughness and hardness of ceria- and yttria-doped tetragonal zirconia ceramics,” Mater. Chem. Phys., vol. 78, no. 1, pp. 253–261, Feb. 2003. [29] K. Maca, M. Trunec, and R. Chmelik, “Processing and properties of fine-grained transparent MgAl2O4 ceramics,” Ceram. − Silikáty, vol. 51, no. 2, pp. 94–97, 2007. [30] Matweb.com, “Property values are typical of naturally occurring Quartz. Actual property values will vary from sample to sample.” MatWeb. [31] Artisteer, “AZS Medium density, Technical properties and information.” 2015. [online] Available: http://www.dakot.co.za/index.php/productlist/azs-medium-density. [accessed: 21-sep2016].
dc.rightshttps://creativecommons.org/licenses/by/3.0/deed.es_ESen-US
dc.sourceTecnoLógicas; Vol. 20 No. 39 (2017); 99-114en-US
dc.sourceTecnoLógicas; Vol. 20 Núm. 39 (2017); 99-114es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectCeramic refractoriesen-US
dc.subjectmechanical propertiesen-US
dc.subjectdynamic drillingen-US
dc.subjectmicro hardnessen-US
dc.subjectRefractarios cerámicoses-ES
dc.subjectpropiedades mecánicases-ES
dc.subjectresistencia a la perforaciónes-ES
dc.subjectmicroindentaciónes-ES
dc.titleDynamic drilling as an alternative method for determining the mechanical behavior of refractories materialsen-US
dc.titleUso de la perforación dinámica como un método alternativo para determinar el comportamiento mecánico de materiales refractarioses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem