Mostrar el registro sencillo del ítem
Microfabrication of position reference patterns onto glass microscope slides for high-accurate analysis of dynamic cellular events
Microfabricación de patrones de referencia en posición en portaobjetos de microscopio para el análisis de alta precisión de eventos celulares dinámicos
dc.creator | Galeano, July A. | |
dc.creator | Sandoz, Patrick | |
dc.creator | Zarzycki, Artur | |
dc.creator | Robert, Laurent | |
dc.creator | Jaramillo, Juan M. | |
dc.date | 2017-05-02 | |
dc.date.accessioned | 2021-03-18T21:06:46Z | |
dc.date.available | 2021-03-18T21:06:46Z | |
dc.identifier | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/695 | |
dc.identifier | 10.22430/22565337.695 | |
dc.identifier.uri | http://test.repositoriodigital.com:8080/handle/123456789/11694 | |
dc.description | Glass microscopes slides are widely used as in situ base-substrates carrying diverse micro-fabricated systems or elements. For such purposes, the micro-fabrication process consists in transferring a pre-defined design onto the substrate made of a glass microscope slide. This is known as patterning, which is a technique that can also be used in transferring specific designs that allows region of interest (ROI) recovery under the microscope. In those cases, two main challenges appear: 1) Disturbances in light transmission should remain minimum to keep the high quality of observation of the object of interest under the microscope. 2) The pattern-size should then be small enough but, however, larger than the diffraction limit to be observable satisfactorily for positioning purposes. In this article, we present the procedures involved in the microfabrication of Pseudo-Periodic Patterns (PPP) encrypting the absolute position of an extended area. Those patterns are embedded in Pétri dishes in order to allow the highaccurate retrieval of absolute position and orientation. The presented microfabrication is based in a technique known as lift-off, which after parameter adjustment, allows the obtaining of PPP fulfilling the two previously mentioned requirements. The results report on PPP realized on glass microscope slides and composed by 2µm side dots made of aluminum with a thickness of 30nm. | en-US |
dc.description | Los portaobjetos de microscopio se utilizan ampliamente como sustratos base in situ para la realización de diversos sistemas o elementos microfabricados. Para estos fines, el proceso de microfabricación consiste en transferir un diseño predefinido sobre el sustrato correspondiente a una lámina de vidrio utilizada como portaobjetos de microscopio. Este proceso se conoce como “patterning”, que es una técnica que también se puede utilizar en la transferencia de diseños específicos que permite la recuperación de una región de interés (ROI) bajo el microscopio. En estos casos, aparecen dos desafíos principales: 1) Las perturbaciones en la transmisión de la luz deben permanecer mínimas para mantener la alta calidad de observación del objeto de interés bajo el microscopio. 2) El tamaño del patrón debe ser entonces suficientemente pequeño, pero, sin embargo, mayor que el límite de difracción para ser observable satisfactoriamente para propósitos de posicionamiento. En este artículo presentamos los procedimientos involucrados en la microfabricación de Patrones Pseudo-Periódicos (PPP) los cuales encriptan la posición absoluta de un área extendida. Esos patrones están embebidos en placas de Pétri para permitir la recuperación absoluta y de alta precisión de una ROI, al igual que su orientación. La microfabricación presentada se basa en una técnica conocida como “liftoff” que, tras el ajuste de parámetros, permite la obtención de PPP cumpliendo los dos requisitos anteriormente mencionados. Los resultados corresponden a la realización de PPP en portaobjetos de vidrio y compuesto por puntos laterales de 2μm hechos de aluminio con un grosor de 30nm. | es-ES |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Instituto Tecnológico Metropolitano (ITM) | en-US |
dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/695/677 | |
dc.relation | /*ref*/R. Ramji, N. T. Khan, A. Muñoz-Rojas, and K. Miller-Jensen, “‘Pop-slide’ patterning: rapid fabrication of microstructured PDMS gasket slides for biological applications,” RSC Adv., vol. 5, no. 81, pp. 66294–66300, 2015. [2] B. Gumuscu, A. den Berg, and J. C. T. Eijkel, “Custom micropatterning of hydrogels in closed microfluidic platforms fabricated by capillary pinning,” in The 18th International Conference on Miniaturized Systems for Chemistry and Life Sciences, 2014. [3] J. Lafaurie-Janvore, E. E. Antoine, S. J. Perkins, A. Babataheri, and A. I. Barakat, “A simple microfluidic device to study cell-scale endothelial mechanotransduction,” Biomed. Microdevices, vol. 18, no. 4, p. 63, Aug. 2016. [4] N. Nagarajan, K. Hung, and P. Zorlutuna, “Protein Micropatterning Techniques for Tissue Engineering and Stem Cell Research,” in Cell and Material Interface: Advances in Tissue Engineering, Biosensor, Implant, and Imaging Technologies, vol. 52, CRC Press, 2015, pp. 109–146. [5] J. Jaramillo, A. Zarzycki, J. Galeano, and P. Sandoz, “Performance Characterization of an xy-Stage Applied to Micrometric Laser Direct Writing Lithography.,” Sensors (Basel)., vol. 17, no. 2, p. 278, Jan. 2017. [6] C.-T. Chen, “Inkjet Printing of Microcomponents: Theory, Design, Characteristics and Applications,” in Features of Liquid Crystal Display Materials and Processes, InTech, 2011, pp. 43–60. [7] K. Boolchandani and B. Sarita, “A Review Paper on Nanotechnology Applications and Concepts,” in IJIRST || National Conference on Innovations in Micro-electronics, Signal Processing and Communication Technologies (V-IMPACT-2016), 2016, pp. 61–62. [8] A. Nag, A. I. Zia, S. C. Mukhopadhyay, and J. Kosel, “Performance enhancement of electronic sensor through mask-less lithography,” in 2015 9th International Conference on Sensing Technology (ICST), 2015, pp. 374–379. [9] D. St-Jacques, S. Martel, and T. B. FitzGerald, “Nanoscale Grid based potitioning system for miniature instrumented robots,” in Canadian Conference on Electrical and Computer Engineering, 2003, vol. 3, pp. 1831–1834. [10] D. B. Boyton, “Position encoder using statistically biased pseudorandom sequence.” 2004. [11] V. Guelpa, P. Sandoz, M. A. Vergara, C. Clévy, N. Le Fort-Piat, and G. J. Laurent, “2D visual micro-position measurement based on intertwined twin-scale patterns,” Sensors Actuators A Phys., vol. 248, pp. 272–280, Sep. 2016. [12] M. J. Yao, “Method of printing location markings on surfaces for microscopic research.” 2013. [13] M. Wrenn and D. Soenksen, “Systems and methods for tracking a slide using a composite barcode label.” 2016. [14] J.-A. Galeano-Zea, P. Sandoz, E. Gaiffe, J.-L. Pretet, and C. Mougin, “Pseudo-Periodic Encryption of Extended 2-D Surfaces for High Accurate Recovery of any Random Zone by Vision,” Int. J. Optomechatronics, vol. 4, no. 1, pp. 65–82, Jan. 2010. [15] J. A. Galeano Z., P. Sandoz, E. Gaiffe, S. Launay, L. Robert, M. Jacquot, F. Hirchaud, J.-L. Prétet, and C. Mougin, “Position-referenced microscopy for live cell culture monitoring,” Biomed. Opt. Express, vol. 2, no. 5, p. 1307, May 2011. [16] M. GmbH, Lithography: Theory and Applications of Photoresists, Developers, Solvents and Etchants. MicroChemicals GmbH, 2007. [17] M. J. Madou, Manufacturing techniques for microfabrication and nanotechnology, 1st ed., vol. 2. Boca Ratón - Florida: CRC Press, 2011. [18] Elveflow, “How to do PDMS lithography replication from a su-8 mold: The PDMS lithography replication process: tips and tricks,” The SU-8 mold fabrication process: tips and tricks. [Online]. Available: http://www.elveflow.com/microfluidic-tutorials/soft-lithography-reviews-and-tutorials/introduction-in-soft-lithography/pdms-softlithography-replication/. | |
dc.rights | https://creativecommons.org/licenses/by/3.0/deed.es_ES | en-US |
dc.source | TecnoLógicas; Vol. 20 No. 39 (2017); 115-126 | en-US |
dc.source | TecnoLógicas; Vol. 20 Núm. 39 (2017); 115-126 | es-ES |
dc.source | 2256-5337 | |
dc.source | 0123-7799 | |
dc.subject | Microtechnology | en-US |
dc.subject | lift-off process | en-US |
dc.subject | pseudo-periodic patterns | en-US |
dc.subject | glass microscope slides | en-US |
dc.subject | micropatterning | en-US |
dc.subject | Micro-tecnología | es-ES |
dc.subject | proceso lift-off | es-ES |
dc.subject | patrones pseudo-periódicos | es-ES |
dc.subject | láminas cubreobjetos de vidrio | es-ES |
dc.subject | micropatterning | es-ES |
dc.title | Microfabrication of position reference patterns onto glass microscope slides for high-accurate analysis of dynamic cellular events | en-US |
dc.title | Microfabricación de patrones de referencia en posición en portaobjetos de microscopio para el análisis de alta precisión de eventos celulares dinámicos | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Research Papers | en-US |
dc.type | Artículos de investigación | es-ES |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
tecnologia [520]