Mostrar el registro sencillo del ítem
Optimal Power Flow for radial and mesh grids using semidefinite programming
Flujo de potencia óptimo para redes radiales y enmalladas empleando programación semidefinida
dc.creator | Montoya-Giraldo, Oscar D. | |
dc.creator | Gil-González, Walter J. | |
dc.creator | Garcés-Ruíz, Alejandro | |
dc.date | 2017-09-04 | |
dc.date.accessioned | 2021-03-18T21:06:47Z | |
dc.date.available | 2021-03-18T21:06:47Z | |
dc.identifier | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/703 | |
dc.identifier | 10.22430/22565337.703 | |
dc.identifier.uri | http://test.repositoriodigital.com:8080/handle/123456789/11700 | |
dc.description | This paper presents a convex formulation for optimal power flow (OPF) in both radial and meshed grids. A semidefinite programming (SDP) approximation transforms the quadratic non-convex model into a relaxed convex quadratic model, which can be more efficiently solved. This model is implemented in MATLAB using the CVX package for convex optimization. The results obtained are compared to the non-linear model of the problem implemented in GAMS and MATPOWER by using four typical systems in specialized literature (two radial and two meshed). SDP approximation demonstrated to provide accurate solutions that are close to an optimal solution of the problem in shorter computational times. Such solutions are applicable to real-time operation and control problems. | en-US |
dc.description | Este artículo presenta una formulación convexa para el problema de flujo de potencia óptimo (Optimal Power Flow-OPF) en sistemas de potencia radiales y enmallados, a través de un modelo matemático basado en programación semidefinida (Semidefinite Programming-SDP), el cual trasforma el modelo cuadrático no convexo del OPF en un modelo convexo relajado, que puede ser solucionado de forma mucho más eficiente. El modelo es implementado en MATLAB usando el paquete de optimización convexa CVX. Los resultados obtenidos son comparados con el modelo no lineal del problema implementado en GAMS y MATPOWER usando cuatro sistemas típicos de la literatura especializada, dos de tipo radial y dos enmallado. Las soluciones encontradas por esta aproximación convexa, son muy cercanas a las respuestas presentadas en la literatura especializada para el modelo no lineal. Este tipo de aproximación permite obtener soluciones de muy buena calidad, muy cercanas a la solución óptima del problema en tiempos computacionales menores y susceptibles de aplicarse en problemas de operación y control en tiempo real. | es-ES |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Instituto Tecnológico Metropolitano (ITM) | en-US |
dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/703/684 | |
dc.relation | /*ref*/D. Wu, D. K. Molzahn, B. C. Lesieutre, and K. Dvijotham, “A Deterministic Method to Identify Multiple Local Extrema for the AC Optimal Power Flow Problem,” IEEE Trans. Power Syst., pp. 1–13, 2017. [2] J. Gunda, G. Harrison, and S. Z. Djokic, “Analysis of Infeasible Cases in Optimal Power Flow Problem,” IFAC-PapersOnLine, vol. 49, no. 27, pp. 23–28, 2016. [3] Y. Tang, K. Dvijotham, and S. Low, “Real-time Optimal Power Flow,” IEEE Trans. Smart Grid, pp. 1–11, 2017. [4] M. B. Cain, R. P. O ’neill, and A. Castillo, “History of Optimal Power Flow and Formu-lations,” Fed. Energy Regul. Comm., vol. 1, pp. 1–36, 2012. [5] M. F. Bedrinana, M. J. Rider, and C. A. Castro, “Ill-conditioned Optimal Power Flow solutions and performance of non-linear pro-gramming solvers,” in 2009 IEEE Bucharest PowerTech, 2009, pp. 1–7. [6] J. M. L. Lezama and L. A. G. Pareja, “Flujo de potencia óptimo usando el método del gradiente para reducción de pérdidas en sis-temas de potencia,” Ing. y Cienc., vol. 4, no. 7, pp. 71–85, 2008. [7] A. R. Baran and T. S. P. Fernandes, “A three-phase optimal power flow applied to the planning of unbalanced distribution net-works,” Int. J. Electr. Power Energy Syst., vol. 74, pp. 301–309, Jan. 2016. [8] J. Zhu, “Power Flow Analysis,” in Optimiza-tion of power system operation, Hoboken, NJ, USA: John Wiley & Sons, Inc, 2015, pp. 13–50. [9] X. Bai and H. Wei, “A semidefinite pro-gramming method with graph partitioning technique for optimal power flow problems,” Flujo de potencia óptimo para redes radiales y enmalladas empleando programación semidefinida [42] TecnoLógicas, ISSN-p 0123-7799 / ISSN-e 2256-5337, Vol. 20, No. 40, sep-dic de 2017, pp. 29-42 Int. J. Electr. Power Energy Syst., vol. 33, no. 7, pp. 1309–1314, Sep. 2011. [10] A. K. M. R. Rahman, M. S. Alam, M. Z. Hossain, and M. Shahjahan, “Localization of FACTS devices for optimal power flow using Genetic Algorithm,” in 2013 International Conference on Electrical Information and Communication Technology (EICT), 2014, pp. 1–6. [11] J. Rahul, Y. Sharma, and D. Birla, “A New Attempt to Optimize Optimal Power Flow Based Transmission Losses Using Genetic Algorithm,” in 2012 Fourth International Conference on Computational Intelligence and Communication Networks, 2012, pp. 566–570. [12] S. Balasubramanian, R. V Gokhale, and A. Sekar, “A new AC optimal power flow formu-lation and solution using Genetic Algorithm based on P-Q decomposition,” in 2015 North American Power Symposium (NAPS), 2015, pp. 1–5. [13] J. Soares, T. Sousa, Z. A. Vale, H. Morais, and P. Faria, “Ant Colony Search algorithm for the optimal power flow problem,” in 2011 IEEE Power and Energy Society General Meeting, 2011, pp. 1–8. [14] U. Leeton, D. Uthitsunthorn, U. Kwannetr, N. Sinsuphun, and T. Kulworawanichpong, “Power loss minimization using optimal power flow based on particle swarm optimi-zation,” in Electr. Eng. Comput. Telecom-mun. Inf. Technol., 2010, pp. 440–444. [15] J. Praveen and B. S. Rao, “Multi objective optimization for optimal power flow with IPFC using PSO,” in 2016 3rd International Conference on Electrical Energy Systems (ICEES), 2016, pp. 85–90. [16] Liang Xie and Hsiao-Dong Chiang, “A en-hanced multiple predictor-corrector interior point method for optimal power flow,” in IEEE PES General Meeting, 2010, pp. 1–8. [17] J. R. Marti, H. Ahmadi, and L. Bashualdo, “Linear Power-Flow Formulation Based on a Voltage-Dependent Load Model,” IEEE Trans. Power Deliv., vol. 28, no. 3, pp. 1682–1690, Jul. 2013. [18] A. Garces, “A Linear Three-Phase Load Flow for Power Distribution Systems,” IEEE Trans. Power Syst., vol. 31, no. 1, pp. 827–828, Jan. 2016. [19] A. Garces, “A quadratic approximation for the optimal power flow in power distribution systems,” Electr. Power Syst. Res., vol. 130, pp. 222–229, Jan. 2016. [20] X. Bai, H. Wei, K. Fujisawa, and Y. Wang, “Semidefinite programming for optimal pow-er flow problems,” Int. J. Electr. Power Ener-gy Syst., vol. 30, no. 6–7, pp. 383–392, Jul. 2008. [21] M. Laurent and F. Rendl, “Semidefinite Programming and Integer Programming,” in Handbooks Oper. Res. Manag. Sci., vol. 12, 2005, pp. 393–514. [22] Z. Luo, W. Ma, A. So, Y. Ye, and S. Zhang, “Semidefinite Relaxation of Quadratic Opti-mization Problems,” IEEE Signal Process. Mag., vol. 27, no. 3, pp. 20–34, May 2010. [23] E. Castillo, A. J. Conejo, P. Pedregal, R. García, and N. Alguacil, “Programación no lineal,” in Formulación y Resolución de Mo-delos de Programación Matemática en Inge-niería y Cienc., 1 ed., Real, Espa{ñ}a, 2002, pp. 47–72. [24] S. S. Sharif, J. H. Taylor, and E. F. Hill, “On-line optimal reactive power flow by energy loss minimization,” in Proceedings of 35th IEEE Conference on Decision and Control, vol. 4, pp. 3851–3856. [25] M. Granada, “Flujo de potencia para siste-mas radiales de distribución usando el méto-do de la cadena,” Sci. Tecnhnica, vol. 20, pp. 183–188, 2002. | |
dc.rights | https://creativecommons.org/licenses/by/3.0/deed.es_ES | en-US |
dc.source | TecnoLógicas; Vol. 20 No. 40 (2017); 29-42 | en-US |
dc.source | TecnoLógicas; Vol. 20 Núm. 40 (2017); 29-42 | es-ES |
dc.source | 2256-5337 | |
dc.source | 0123-7799 | |
dc.subject | Convex approximation | en-US |
dc.subject | power flow | en-US |
dc.subject | optimal power flow | en-US |
dc.subject | semidefinite programming | en-US |
dc.subject | radial grids | en-US |
dc.subject | mesh grids | en-US |
dc.subject | Aproximación convexa | es-ES |
dc.subject | flujo de potencia | es-ES |
dc.subject | flujo de potencia óptimo | es-ES |
dc.subject | programación semidefinida | es-ES |
dc.subject | redes radiales | es-ES |
dc.subject | redes malladas | es-ES |
dc.title | Optimal Power Flow for radial and mesh grids using semidefinite programming | en-US |
dc.title | Flujo de potencia óptimo para redes radiales y enmalladas empleando programación semidefinida | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Research Papers | en-US |
dc.type | Artículos de investigación | es-ES |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
tecnologia [520]