Mostrar el registro sencillo del ítem
Optimization of non-stationary Stackelberg models using a self-adaptive evolutionary algorithm
Optimización de modelos de Stackelberg no estacionarios mediante un algoritmo evolutivo auto-adaptativo
dc.creator | Cedeño-Fuentes, Olga P. | |
dc.creator | Arboleda-Castro, Lorena | |
dc.creator | Jacho-Sánchez, Iván | |
dc.creator | Novoa-Hernández, Pavel | |
dc.date | 2017-05-02 | |
dc.date.accessioned | 2021-03-18T21:06:50Z | |
dc.date.available | 2021-03-18T21:06:50Z | |
dc.identifier | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/715 | |
dc.identifier | 10.22430/22565337.715 | |
dc.identifier.uri | http://test.repositoriodigital.com:8080/handle/123456789/11708 | |
dc.description | Stackelberg’s game models involve an important family of Game Theory problems with direct application on economics scenarios. Their main goal is to find an optimal equilibrium between the decisions from two actors that are related one to each other hierarchically. In general, these models are complex to solve due to their hierarchical structure and intractability from an analytical viewpoint. Another reason for such a complexity comes from the presence of uncertainty, which often occurs because of the variability over time of market conditions, adversary strategies, among others aspects. Despite their importance, related literature reflects a few works addressing this kind of non-stationary optimization problems. So, in order to contribute to this research area, the present work proposes a self-adaptive meta-heuristic method for solving online Stackelberg’s games. Experiment results show a significant improvement over an existing method. | en-US |
dc.description | Los modelos de Juegos de Stackelberg engloban una importante familia de problemas de la Teoría de Juegos, que encuentra aplicaciones directas en economía. El principal objetivo es encontrar un equilibrio óptimo entre las decisiones que pueden tomar dos actores que se relacionan jerárquicamente. En general estos modelos son complejos de resolver dada su estructura jerárquica, y la frecuente aparición en estos de funciones objetivos o restricciones intratables analíticamente. Otra causa de dicha complejidad es la existencia de incertidumbre, particularmente debido a la variabilidad en el tiempo de las condiciones del mercado, estrategias de los competidores, entre otras. Un análisis de la literatura relacionada muestra muy pocos trabajos abordando estos problemas de optimización no estacionarios. En este sentido, la presente investigación propone una técnica meta-heurística auto-adaptativa para resolver modelos de Juegos de Stackelberg no estacionarios. Los resultados experimentales obtenidos muestran una mejoría significativa sobre un método existente. | es-ES |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Instituto Tecnológico Metropolitano (ITM) | en-US |
dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/715/693 | |
dc.relation | /*ref*/H. von Stackelberg, The Theory of the Market Economy. Oxford University Press, 1952. [2] B. Colson, P. Marcotte, and G. Savard, ‘Bilevel programming: A survey’, 4OR, vol. 3, no. 2, pp. 87–107, 2005. [3] B. Colson, P. Marcotte, and G. Savard, ‘An overview of bilevel optimization’, Ann. Oper. Res., vol. 153, no. 1, pp. 235–256, 2007. [4] X. León and L. Navarro, ‘A Stackelberg game to derive the limits of energy savings for the allocation of data center resources’, Futur. Gener. Comput. Syst., vol. 29, no. 1, pp. 74–83, 2013. [5] P. Nie, ‘A note on dynamic Stackelberg games with leaders in turn’, Nonlinear Anal. Real World Appl., vol. 13, no. 1, pp. 85–90, 2012. [6] T. Nakamura, ‘One-leader and multiple-follower Stackelberg games with private information’, Econ. Lett., vol. 127, pp. 27–30, 2015. [7] B. Øksendal, L. Sandal, and J. Ubøe, ‘Stochastic Stackelberg equilibria with applications to time-dependent newsvendor models’, J. Econ. Dyn. Control, vol. 37, no. 7, pp. 1284–1299, 2013. [8] D. Wang, G. Du, R. J. Jiao, R. Wu, J. Yu, and D. Yang, ‘A Stackelberg game theoretic model for optimizing product family architecting with supply chain consideration’, Int. J. Prod. Econ., vol. 172, pp. 1–18, 2016. [9] O. A. Wahab, J. Bentahar, H. Otrok, and A. Mourad, ‘A Stackelberg game for distributed formation of business-driven services communities’, Expert Syst. Appl., vol. 45, pp. 359–372, 2016. [10] L. Arboleda-Castro, O. Cedeño-Fuentes, I. Jacho-Sánchez, and P. Novoa-Hernández, ‘Un enfoque computacional evolutivo para problemas de competencia de Stackelberg dinámicos (An evolutionary computational approach for the dynamic Stackelberg competition problems)’, Enfoque UTE, vol. 7, no. 2, pp. 10–24, 2016. [11] I. Boussaïd, J. Lepagnot, and P. Siarry, ‘A survey on optimization metaheuristics’, Inf. Sci. (Ny)., vol. 237, pp. 82–117, 2013. [12] P. Novoa-Hernández, C. C. Corona, and D. A. Pelta, ‘Self-adaptive, multipopulation differential evolution in dynamic environments’, Soft Comput., vol. 17, no. 10, pp. 1861–1881, Mar. 2013. [13] E.-G. Talbi, ‘A Taxonomy of Metaheuristics for Bi-level Optimization’, in Metaheuristics for Bi-level Optimization, vol. 482, E.-G. Talbi, Ed. Springer Berlin Heidelberg, 2013, pp. 1–39. [14] D. Sun, R. F. Benekohal, and S. T. Waller, ‘Bi-level programming formulation and heuristic solution approach for dynamic traffic signal optimization’, Comput. Civ. Infrastruct. Eng., vol. 21, no. 5, pp. 321–333, 2006. [15] M. Linnala, E. Madetoja, H. Ruotsalainen, and J. Hämäläinen, ‘Bi-level optimization for a dynamic multiobjective problem’, Eng. Optim., vol. 44, no. 2, pp. 195–207, 2012. [16] R. Storn and K. Price, ‘Differential Evolution - A Simple and Efficient Heuristic for global Optimization over Continuous Spaces’, J. Glob. Optim., vol. 11, no. 4, pp. 341–359, 1997. [17] Z. Chen and Z. Song, ‘Dynamic portfolio optimization under multi-factor model in stochastic markets’, OR Spectr., vol. 34, no. 4, pp. 885–919, 2012. [18] T. T. Nguyen, S. Yang, and J. Branke, ‘Evolutionary dynamic optimization: A survey of the state of the art’, Swarm Evol. Comput., vol. 6, no. 0, pp. 1–24, 2012. [19] E. Alba, A. Nakib, and P. Siarry, Metaheuristics for Dynamic Optimization, vol. 433. Springer Berlin Heidelberg, 2013. [20] P. Novoa-Hernández, C. C. Corona, and D. A. Pelta, ‘Self-adaptation in dynamic environments - a survey and open issues’, Int. J. Bio-Inspired Comput., vol. 8, no. 1, pp. 1–13, 2016. [21] P. Novoa-Hernández, B. O. Bayas, J. M. Oviedo, A. Puris, M. Menace, and C. Cruz Corona, ‘Impacto de la auto-adaptación en ambientes dinámicos con frecuencia de cambio variable’, Investig. Operacional, vol. 37, no. 3, pp. 292–302, 2016. [22] S. Meyer-Nieberg and H.-G. Beyer, ‘Self-Adaptation in Evolutionary Algorithms’, in Parameter Setting in Evolutionary Algorithms, vol. 54, F. Lobo, C. Lima, and Z. Michalewicz, Eds. Springer Berlin / Heidelberg, 2007, pp. 19–46. [23] A. Sinha, P. Malo, and K. Deb, ‘Test Problem Construction for Single-Objective Bilevel Optimization’, Evol. Comput., vol. 22, no. 3, pp. 439–477, Dec. 2014. [24] P. Novoa-Hernández, D. A. Pelta, and C. C. Corona, ‘Improvement strategies for multi-swarm PSO in dynamic environments’, in Studies in Computational Intelligence, 2010, vol. 284, pp. 371–383. [25] P. Novoa-Hernández, C. C. Corona, and D. A. Pelta, ‘Efficient multi-swarm PSO algorithms for dynamic environments’, Memetic Comput., vol. 3, no. 3, pp. 163–174, 2011. [26] S. García, D. Molina, M. Lozano, and F. Herrera, ‘A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization’, J Heuristics, vol. 15, pp. 617–644, 2009. | |
dc.rights | https://creativecommons.org/licenses/by/3.0/deed.es_ES | en-US |
dc.source | TecnoLógicas; Vol. 20 No. 39 (2017); 185-195 | en-US |
dc.source | TecnoLógicas; Vol. 20 Núm. 39 (2017); 185-195 | es-ES |
dc.source | 2256-5337 | |
dc.source | 0123-7799 | |
dc.subject | Stackelberg games | en-US |
dc.subject | non-stationary bi-level optimization | en-US |
dc.subject | differential evolution | en-US |
dc.subject | adaptation | en-US |
dc.subject | Juegos de Stackelberg | es-ES |
dc.subject | optimización evolutiva de dos niveles no estacionaria | es-ES |
dc.subject | evolución diferencial | es-ES |
dc.subject | auto-adaptación | es-ES |
dc.subject | pruebas no paramétricas | es-ES |
dc.title | Optimization of non-stationary Stackelberg models using a self-adaptive evolutionary algorithm | en-US |
dc.title | Optimización de modelos de Stackelberg no estacionarios mediante un algoritmo evolutivo auto-adaptativo | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Research Papers | en-US |
dc.type | Artículos de investigación | es-ES |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
tecnologia [520]