Mostrar el registro sencillo del ítem
Feature extraction based on time-singularity multifractal spectrum distribution in intracardiac atrial fibrillation signals
Distribución tiempo singularidad del espectro multifractal para el análisis de electrogramas intracardiaco en fibrilación atrial
dc.creator | Urda-Benitez, Robert D. | |
dc.creator | Castro-Ospina, Andrés E. | |
dc.creator | Orozco-Duque, Andrés | |
dc.date | 2017-09-04 | |
dc.date.accessioned | 2021-03-18T21:06:50Z | |
dc.date.available | 2021-03-18T21:06:50Z | |
dc.identifier | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/716 | |
dc.identifier | 10.22430/22565337.716 | |
dc.identifier.uri | http://test.repositoriodigital.com:8080/handle/123456789/11709 | |
dc.description | Non-linear analysis of electrograms (EGM) has been proposed as a tool to detect critical conduction sites (e.g., rotors vortex, multiple wavefronts) in atrial fibrillation (AF). Likewise, studies have shown that multifractal analysis is useful to detect critical activity in EGM signals. However, the multifractal spectrum does not consider the temporal information. There is a new mathematical formalism to overcome this limitation: the time-singularity multifractal spectrum distribution (TS-MFSD), which involves the time variation of the spectrum. In this manuscript, we describe the methodology to compute the TS-MFSD from EGM signals. Moreover, we propose a methodology to extract features from time-singularity spectrum and from singularity energy spectrum (SES). We tested the features in an EGM database labeled by experts as: non-fragmented, discrete fragmented potentials, disorganized activity, and continuous activity. We tested the area under the receiver operating characteristic (ROC) curve. The proposed features achieve an area under the ROC curve of 95.17% when detecting signals with continuous activity. These results outperform those reported using multifractal analysis. To our knowledge, this is the first work that report the use of TS-MFSD in biomedical signals and our findings suggest that time-singularity has the potential to be used in the study of non-stationary behavior of EGM signals in AF. | en-US |
dc.description | El análisis de la dinámica no lineal de señales de Electrogramas Intracardiacos (EGM) ha sido propuesto como una herramienta para detectar sitios críticos de conducción eléctrica (ejm: rotores o múltiples frentes de onda) en fibrilación auricular (AF). Estudios previos han mostrado que el análisis multifractal puede ser de utilidad para detectar actividad crítica en la señal EGM. A pesar de esto, el análisis multifractal no considera la información temporal de la señal. Existe un nuevo formalismo matemático para superar esta limitación, el cual es llamado Distribución Tiempo-Singularidad del Espectro Multifractal (TS-MFSD), que involucra la variación en el tiempo del espectro. Este artículo describe una nueva metodología para calcular características a partir del TS-MFSD en señales EGM. Nosotros evaluamos los métodos descritos en una base de datos de EGM etiquetada por expertos en cuatro clases: no fragmentada, potenciales fragmentados discretos, actividad desorganizada y actividad continua. Para evaluar el rendimiento se calculó el área bajo la curva ROC. El mejor resultado de las características propuestas alcanzó un área bajo la curva ROC de 95.17% en la detección de señales con actividad continua. Este resultado supera los reportados mediante la utilización del análisis multifractal. Hasta donde sabemos, este es el primer trabajo que reporta la utilización de la TS-MFSD en señales biomédicas, y nuestros resultados sugieren que el análisis Tiempo-Singularidad tiene el potencial para estudiar el comportamiento no estacionario de las señales EGM en AF. | es-ES |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Instituto Tecnológico Metropolitano (ITM) | en-US |
dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/716/694 | |
dc.relation | /*ref*/P. Kirchhof, S. Benussi, D. Kotecha, A. Ahlsson, D. Atar, B. Casadei, M. Castella, H.-C. Diener, H. Heidbuchel, J. Hendriks, G. Hindricks, A. S. Manolis, J. Oldgren, B. A. Popescu, U. Schotten, B. Van Putte, P. Vardas, S. Agewall, J. Camm, G. Baron Esquivias, W. Budts, S. Carerj, F. Casselman, A. Coca, R. De Caterina, S. Deftereos, D. Dobrev, J. M. Ferro, G. Filippatos, D. Fitzsimons, B. Gorenek, M. Guenoun, S. H. Hohnloser, P. Kolh, G. Y. H. Lip, A. Manolis, J. McMurray, P. Ponikowski, R. Rosenhek, F. Ruschitzka, I. Savelieva, S. Sharma, P. Suwalski, J. L. Tamargo, C. J. Taylor, I. C. Van Gelder, A. A. Voors, S. Windecker, J. L. Zamorano, and K. Zeppenfeld, “2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS,” Eur. Heart J., vol. 37, no. 38, pp. 2893–2962, Oct. 2016. [2] K. Yoshida and K. Aonuma, “Catheter ablation of atrial fibrillation: Past, present, and future directions,” J. Arrhythmia, vol. 28, no. 2, pp. 83–90, Apr. 2012. [3] J. Chen, Y. Lin, L. Chen, J. Yu, Z. Du, S. Li, Z. Yang, C. Zeng, X. Lai, Q. Lu, B. Tian, J. Zhou, J. Xu, A. Zhang, and Z. Li, “A decade of complex fractionated electrograms catheter-based ablation for atrial fibrillation: Literature analysis, meta-analysis and systematic review,” IJC Hear. Vessel., vol. 4, no. 1, pp. 63–72, Sep. 2014. [4] K. Nademanee, E. Lockwood, N. Oketani, and B. Gidney, “Catheter ablation of atrial fibrillation guided by complex fractionated atrial electrogram mapping of atrial fibrillation substrate,” J. Cardiol., vol. 55, no. 1, pp. 1–12, Jan. 2010. [5] J. P. Ugarte, A. Orozco-Duque, C. Tobón, V. Kremen, D. Novak, J. Saiz, T. Oesterlein, C. Schmitt, A. Luik, and J. Bustamante, “Dynamic Approximate Entropy Electroanatomic Maps Detect Rotors in a Simulated Atrial Fibrillation Model,” PLoS One, vol. 9, no. 12, Dec. 2014. [6] D. Novak, V. Kremen, D. Cuesta, K. Schmidt, V. Chudacek, and L. Lhotska, “Discrimination of endocardial electrogram disorganization using a signal regularity analysis,” in 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009, pp. 1812–1815. [7] A. N. Ganesan, P. Kuklik, D. H. Lau, A. G. Brooks, M. Baumert, W. W. Lim, S. Thanigaimani, S. Nayyar, R. Mahajan, J. M. Kalman, K. C. Roberts-Thomson, and P. Sanders, “Bipolar Electrogram Shannon Entropy at Sites of Rotational Activation: Implications for Ablation of Atrial Fibrillation,” Circ. Arrhythmia Electrophysiol., vol. 6, no. 1, pp. 48–57, Feb. 2013. [8] A. Orozco-Duque, D. Novak, V. Kremen, and J. Bustamante, “Multifractal analysis for grading complex fractionated electrograms in atrial fibrillation,” Physiol. Meas., vol. 36, no. 11, pp. 2269–2284, Nov. 2015. [9] P. C. Ivanov, L. A. N. Amaral, A. L. Goldberger, S. Havlin, M. G. Rosenblum, Z. R. Struzik, and H. E. Stanley, “Multifractality in Human Heartbeat Dynamics,” Nature, vol. 399, no. 6735, pp. 461–465, Jun. 1999. [10] G. Xiong, S. Zhang, and Q. Liu, “The time-singularity multifractal spectrum distribution,” Phys. A Stat. Mech. its Appl., vol. 391, no. 20, pp. 4727–4739, Oct. 2012. [11] C. Schilling, M. Keller, D. Scherr, T. Oesterlein, M. Haïssaguerre, C. Schmitt, O. Dössel, and A. Luik, “Fuzzy decision tree to classify complex fractionated atrial electrograms,” Biomed. Eng. / Biomed. Tech., vol. 60, no. 3, pp. 245–255, Jan. 2015. [12] C. Schilling, Analysis of Atrial Electrograms. KIT Scientific Publishing, 2012. [13] J. Feder, Fractals. Boston, MA: Springer US, 1988. [14] J. de Souza and S. Pires Rostirolla, “A fast MATLAB program to estimate the multifractal spectrum of multidimensional data: Application to fractures,” Comput. Geosci., vol. 37, no. 2, pp. 241–249, Feb. 2011. [15] J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H. E. Stanley, “Multifractal detrended fluctuation analysis of nonstationary time series,” Phys. A Stat. Mech. its Appl., vol. 316, no. 1–4, pp. 87–114, Dec. 2002. [16] E. A. F. Ihlen, “Introduction to Multifractal Detrended Fluctuation Analysis in Matlab,” Front. Physiol., vol. 3, 2012. [17] G. Xiong, W. Yu, and S. Zhang, “Time-singularity multifractal spectrum distribution based on detrended fluctuation analysis,” Phys. A Stat. Mech. its Appl., vol. 437, pp. 351–366, Nov. 2015. [18] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. Wiley, New York, 2001. [19] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit. Lett., vol. 27, no. 8, pp. 861–874, Jun. 2006. [20] G. Cardillo, “ROC curve: compute a Receiver Operating Characteristics curve,” Natick (MA): Math-Works. 2008. [21] L. Telesca, V. Lapenna, and M. Macchiato, “Mono- and multi-fractal investigation of scaling properties in temporal patterns of seismic sequences,” Chaos, Solitons & Fractals, vol. 19, no. 1, pp. 1–15, Jan. 2004. [22] Y. Takahashi, M. D. O’Neill, M. Hocini, R. Dubois, S. Matsuo, S. Knecht, S. Mahapatra, K.-T. Lim, P. Jaïs, A. Jonsson, F. Sacher, P. Sanders, T. Rostock, P. Bordachar, J. Clémenty, G. J. Klein, and M. Haïssaguerre, “Characterization of Electrograms Associated With Termination of Chronic Atrial Fibrillation by Catheter Ablation,” J. Am. Coll. Cardiol., vol. 51, no. 10, pp. 1003–1010, Mar. 2008. [23] R. J. Hunter, I. Diab, M. Tayebjee, L. Richmond, S. Sporton, M. J. Earley, and R. J. Schilling, “Characterization of Fractionated Atrial Electrograms Critical for Maintenance of Atrial Fibrillation: A Randomized, Controlled Trial of Ablation Strategies (The CFAE AF Trial),” Circ. Arrhythmia Electrophysiol., vol. 4, no. 5, pp. 622–629, Oct. 2011. [24] D. H. Lau, S. Zeemering, B. Maesen, P. Kuklik, and others, “Catheter ablation targeting complex fractionated atrial electrogram in atrial fibrillation,” J. Atr. Fibrillation, vol. 6, no. 3, 2013. [25] R. J. Hunter, I. Diab, G. Thomas, E. Duncan, D. Abrams, M. Dhinoja, S. Sporton, M. J. Earley, and R. J. Schilling, “Validation of a classification system to grade fractionation in atrial fibrillation and correlation with automated detection systems,” Europace, vol. 11, no. 12, pp. 1587–1596, Dec. 2009. | |
dc.rights | https://creativecommons.org/licenses/by/3.0/deed.es_ES | en-US |
dc.source | TecnoLógicas; Vol. 20 No. 40 (2017); 97-111 | en-US |
dc.source | TecnoLógicas; Vol. 20 Núm. 40 (2017); 97-111 | es-ES |
dc.source | 2256-5337 | |
dc.source | 0123-7799 | |
dc.subject | Cardiac signals | en-US |
dc.subject | Detrended Fluctuation Analysis | en-US |
dc.subject | multifractal singularity spectrum | en-US |
dc.subject | non-linear signal processing | en-US |
dc.subject | time series analysis | en-US |
dc.subject | Análisis de series de tiempo | es-ES |
dc.subject | análisis no lineal de señales | es-ES |
dc.subject | Espectro de Singularidad Multifractal | es-ES |
dc.subject | señales cardiacas | es-ES |
dc.title | Feature extraction based on time-singularity multifractal spectrum distribution in intracardiac atrial fibrillation signals | en-US |
dc.title | Distribución tiempo singularidad del espectro multifractal para el análisis de electrogramas intracardiaco en fibrilación atrial | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Research Papers | en-US |
dc.type | Artículos de investigación | es-ES |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
tecnologia [520]