Mostrar el registro sencillo del ítem
Neurosurgery and brain shift: review of the state of the art and main contributions of robotics
Neurocirugía y desplazamientos cerebrales: una revisión del estado del arte y principales contribuciones desde la robótica
dc.creator | Correa-Arana, Karin | |
dc.creator | Vivas-Albán, Oscar A. | |
dc.creator | Sabater-Navarro, José M. | |
dc.date | 2017-09-04 | |
dc.date.accessioned | 2021-03-18T21:06:51Z | |
dc.date.available | 2021-03-18T21:06:51Z | |
dc.identifier | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/719 | |
dc.identifier | 10.22430/22565337.719 | |
dc.identifier.uri | http://test.repositoriodigital.com:8080/handle/123456789/11712 | |
dc.description | This paper presents a review about neurosurgery, robotic assistants in this type of procedure, and the approach to the problem of brain tissue displacement, including techniques for obtaining medical images. It is especially focused on the phenomenon of brain displacement, commonly known as brain shift, which causes a loss of reference between the preoperative images and the volumes to be treated during image-guided surgery. Hypothetically, with brain shift prediction and correction for the neuronavigation system, minimal invasion trajectories could be planned and shortened. This would reduce damage to functional tissues and possibly lower the morbidity and mortality in delicate and demanding medical procedures such as the removal of a brain tumor. This paper also mentions other issues associated with neurosurgery and shows the way robotized systems have helped solve these problems. Finally, it highlights the future perspectives of neurosurgery, a branch of medicine that seeks to treat the ailments of the main organ of the human body from the perspective of many disciplines. | en-US |
dc.description | Este artículo presenta una revisión acerca de la neurocirugía, los asistentes robóticos en este tipo de procedimiento, y el tratamiento que se le da al problema del desplazamiento que sufre el tejido cerebral, incluyendo las técnicas para la obtención de imágenes médicas. Se abarca de manera especial el fenómeno del desplazamiento cerebral, comúnmente conocido como brain shift, el cual causa pérdida de referencia entre las imágenes preoperatorias y los volúmenes a tratar durante la cirugía guiada por imágenes médicas. Hipotéticamente, con la predicción y corrección del brain shift sobre el sistema de neuronavegación, se podrían planear y seguir trayectorias de mínima invasión, lo que conllevaría a minimizar el daño a los tejidos funcionales y posiblemente a reducir la morbilidad y mortalidad en estos delicados y exigentes procedimientos médicos, como por ejemplo, en la extirpación de un tumor cerebral. Se mencionan también otros inconvenientes asociados a la neurocirugía y se muestra cómo los sistemas robotizados han ayudado a solventar esta problemática. Finalmente se ponen en relieve las perspectivas futuras de esta rama de la medicina, la cual desde muchas disciplinas busca tratar las dolencias del principal órgano del ser humano. | es-ES |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Instituto Tecnológico Metropolitano (ITM) | en-US |
dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/719/696 | |
dc.relation | /*ref*/P. B. McBeth, D. F. Louw, P. R. Rizun, and G. R. Sutherland, “Robotics in neurosur-gery,” Am. J. Surg., vol. 188, no. 4, pp. 68–75, Oct. 2004. [2] S. Nicolaidis, “Neurosurgery of the future: Deep brain stimulations and manipulations,” Metabolism, vol. 69, pp. S16–S20, Apr. 2017. [3] C. Faria, W. Erlhagen, M. Rito, E. De Momi, G. Ferrigno, and E. Bicho, “Review of Robotic Technology for Stereotactic Neurosurgery,” IEEE Rev. Biomed. Eng., vol. 8, pp. 125–137, 2015. [4] M. I.-P. H. Cobb, J. M. Taekman, A. R. Zomorodi, L. F. Gonzalez, and D. A. Turner, “Simulation in Neurosurgery—A Brief Re-view and Commentary,” World Neurosurg., vol. 89, pp. 583–586, May 2016. [5] A. N. Kumar, M. I. Miga, T. S. Pheiffer, L. B. Chambless, R. C. Thompson, and B. M. Dawant, “Persistent and automatic in-traoperative 3D digitization of surfaces un-der dynamic magnifications of an operating microscope,” Med. Image Anal., vol. 19, no. 1, pp. 30–45, Jan. 2015. [6] S. Budday, R. Nay, R. de Rooij, P. Stein-mann, T. Wyrobek, T. C. Ovaert, and E. Kuhl, “Mechanical properties of gray and white matter brain tissue by indentation,” J. Mech. Behav. Biomed. Mater., vol. 46, pp. 318–330, Jun. 2015. [7] A. Goriely, M. G. D. Geers, G. A. Holzapfel, J. Jayamohan, A. Jérusalem, S. Sivaloga-nathan, W. Squier, J. A. W. van Dommelen, S. Waters, and E. Kuhl, “Mechanics of the brain: perspectives, challenges, and opportu-nities,” Biomech. Model. Mechanobiol., vol. 14, no. 5, pp. 931–965, Oct. 2015. [8] I. Reinertsen, F. Lindseth, C. Askeland, D. H. Iversen, and G. Unsgård, “Intra-operative correction of brain-shift,” Acta Neurochir. (Wien)., vol. 156, no. 7, pp. 1301–1310, Jul. 2014. [9] R. R. Shamir, L. Joskowicz, I. Tamir, E. Dabool, L. Pertman, A. Ben-Ami, and Y. Sho-shan, “Reduced risk trajectory planning in image-guided keyhole neurosurgery,” Med. Phys., vol. 39, no. 5, pp. 2885–2895, May 2012. [10] G. Echegaray, I. Herrera, I. Aguinaga, C. Buchart, and D. Borro, “A Brain Surgery Simulator,” IEEE Comput. Graph. Appl., vol. 34, no. 3, pp. 12–18, May 2014. [11] D. Hu, Y. Gong, B. Hannaford, and E. J. Seibel, “Path planning for semi-automated simulated robotic neurosurgery,” in 2015 IEEE/RSJ International Conference on In-telligent Robots and Systems (IROS), 2015, pp. 2639–2645. [12] S. Bano, Seong Young Ko, and F. Rodriguez y Baena, “Smooth path planning for a biologi-cally-inspired neurosurgical probe,” in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, pp. 920–923. [13] B. J. Mohammed, A. M. Abbosh, S. Mustafa, and D. Ireland, “Microwave System for Head Imaging,” IEEE Trans. Instrum. Meas., vol. 63, no. 1, pp. 117–123, Jan. 2014. [14] D. Paraskevopoulos, J. Roth, and S. Constan-tini, “Endoscope Holders in Cranial Neuro-surgery: Part I—Technology, Trends, and Implications,” World Neurosurg. vol. 89, pp. 343–354, May 2016. [15] R. Reisch, A. Stadie, R. A. Kockro, and N. Hopf, “The Keyhole Concept in Neurosur-gery,” World Neurosurg. vol. 79, no. 2, p. S17.e9-S17.e13, Feb. 2013. [16] N. W. D. Thomas and J. Sinclair, “Image-Guided Neurosurgery: History and Current Clinical Applications,” J. Med. Imaging Ra-diat. Sci., vol. 46, no. 3, pp. 331–342, Sep. 2015. [17] P. Yashar and L. N. Hopkins, “Instrumenta-tion in Neurosurgery: Nurturing the Trend toward Minimalism,” World Neurosurg. vol. 80, no. 3–4, pp. 240–242, Sep. 2013. [18] D. Liu and T. Wang, “A Workflow for Robot Assisted Neurosurgery,” in 2006 IEEE/RSJ International Conference on Intelligent Ro-bots and Systems, 2006, pp. 2870–2875. [19] A. E. Ibrahim, K. A. Sarhane, and J. C. Selber, “New Frontiers in Robotic-Assisted Microsurgical Reconstruction,” Clin. Plast. Surg., vol. 44, no. 2, pp. 415–423, Apr. 2017. [20] J. A. M. Padilla, J. B. Coll, and D. M. Rosito, “Neurocirugía endoscópica, la nueva era,” El Resid., vol. 4, no. 2, pp. 67–72, 2009. [21] R. Rehder and A. R. Cohen, “Endoscope-Assisted Microsurgical Subtemporal Keyhole Approach to the Posterolateral Suprasellar Region and Basal Cisterns,” World Neuro-surg. vol. 103, pp. 114–121, Jul. 2017. [22] V. Trévillot, R. Garrel, E. Dombre, P. Poignet, R. Sobral, and L. Crampette, “Ro-botic endoscopic sinus and skull base sur-gery: Review of the literature and future pro-spects,” Eur. Ann. Otorhinolaryngol. Head Neck Dis., vol. 130, no. 4, pp. 201–207, Sep. 2013. [23] R. L. Carrau, D. M. Prevedello, D. de Lara, K. Durmus, and E. Ozer, “Combined tran-soral robotic surgery and endoscopic endo-nasal approach for the resection of extensive malignancies of the skull base,” Head Neck, vol. 35, no. 11, pp. E351–E358, Nov. 2013. [24] R. Wirz, L. G. Torres, P. J. Swaney, H. Gilbert, R. Alterovitz, R. J. Webster, K. D. Weaver, and P. T. Russell, “An Experimental Feasi-bility Study on Robotic Endonasal Telesur-gery,” Neurosurgery, vol. 76, no. 4, pp. 479–484, Apr. 2015. [25] M. Sadeghi-Goughari and A. Mojra, “In-traoperative thermal imaging of brain tu-mors using a haptic-thermal robot with ap-plication in minimally invasive neurosur-gery,” Appl. Therm. Eng., vol. 91, pp. 600–610, Dec. 2015. [26] Oscar Andrés Vivas Albán, “Aplicaciones de la robotica al campo de la medicina,” 2007. [27] J. Weickenmeier, E. Kuhl, and A. Goriely, “The mechanics of decompressive craniecto-my: Bulging in idealized geometries,” J. Mech. Phys. Solids, vol. 96, pp. 572–590, Nov. 2016. [28] K. M. Labus and C. M. Puttlitz, “Viscoelas-ticity of brain corpus callosum in biaxial ten-sion,” J. Mech. Phys. Solids, vol. 96, pp. 591–604, Nov. 2016. [29] A. N. Kumar, M. I. Miga, T. S. Pheiffer, L. B. Chambless, R. C. Thompson, and B. M. Dawant, “Automatic tracking of intraopera-tive brain surface displacements in brain tumor surgery,” in 2014 36th Annual Inter-national Conference of the IEEE Engineering in Medicine and Biology Society, 2014, pp. 1509–1512. [30] Gang Li, Hao Su, G. A. Cole, Weijian Shang, K. Harrington, A. Camilo, J. G. Pilitsis, and G. S. Fischer, “Robotic System for MRI-Guided Stereotactic Neurosurgery,” IEEE Trans. Biomed. Eng., vol. 62, no. 4, pp. 1077–1088, Apr. 2015. [31] H. Yousefi, “An Optimised Linear Mechani-cal Model for Estimating Brain Shift Caused by Meningioma Tumours,” Int. J. Biomed. Sci. Eng., vol. 1, no. 1, p. 1, 2013. [32] G. Soza, R. Grosso, C. Nimsky, P. Hastreiter, R. Fahlbusch, and G. Greiner, “Determina-tion of the elasticity parameters of brain tis-sue with combined simulation and registra-tion,” Int. J. Med. Robot. Comput. Assist. Surg., vol. 1, no. 3, pp. 87–95, Sep. 2005. [33] P. J. Hutchinson, A. G. Kolias, I. S. Timo-feev, E. A. Corteen, M. Czosnyka, J. Timo-thy, I. Anderson, D. O. Bulters, A. Belli, C. A. Eynon, J. Wadley, A. D. Mendelow, P. M. Mitchell, M. H. Wilson, G. Critchley, J. Sa-huquillo, A. Unterberg, F. Servadei, G. M. Teasdale, J. D. Pickard, D. K. Menon, G. D. Murray, and P. J. Kirkpatrick, “Trial of De-compressive Craniectomy for Traumatic In-tracranial Hypertension,” N. Engl. J. Med., vol. 375, no. 12, pp. 1119–1130, Sep. 2016. [34] T. Hartkens, D. L. G. Hill, A. D. Castellano-Smith, D. J. Hawkes, C. R. Maurer, A. J. Martin, W. A. Hall, H. Liu, and C. L. Truwit, “Measurement and analysis of brain defor-mation during neurosurgery,” IEEE Trans. Med. Imaging, vol. 22, no. 1, pp. 82–92, Jan. 2003. [35] A. Shaikhouni and J. B. Elder, “Computers and Neurosurgery,” World Neurosurg. vol. 78, no. 5, pp. 392–398, Nov. 2012. [36] D. B. Camarillo, T. M. Krummel, and J. K. Salisbury, “Robotic technology in surgery: Past, present, and future,” Am. J. Surg., vol. 188, no. 4, pp. 2–15, Oct. 2004. [37] T. L. Cossetto, K. Zareinia, and G. R. Suther-land, “Robotics for neurosurgery,” in Medical Robotics, P. Gomes, Ed. Woodhead Publish-ing, 2012, pp. 59–77. [38] Y. S. Chae, S. H. Lee, H. M. Oh, and M. Y. Kim, “Coordinates tracking and augmented reality system using bipolar X-ray fluorosco-py and stereo vision for image-guided neuro-surgery,” in 2013 13th International Confer-ence on Control, Automation and Systems (ICCAS 2013), 2013, pp. 107–112. [39] G. R. Sutherland, I. Latour, and A. D. Greer, “Integrating an Image-Guided Robot with In-traoperative MRI,” IEEE Eng. Med. Biol. Mag., vol. 27, no. 3, pp. 59–65, May 2008. [40] M. D. Comparetti, E. De Momi, A. Vaccarel-la, M. Riechmann, and G. Ferrigno, “Optical-ly tracked multi-robot system for keyhole neurosurgery,” in 2011 IEEE International Conference on Robotics and Automation, 2011, pp. 661–666. [41] D. P. Devito, L. Kaplan, R. Dietl, M. Pfeiffer, D. Horne, B. Silberstein, M. Hardenbrook, G. Kiriyanthan, Y. Barzilay, A. Bruskin, D. Sackerer, V. Alexandrovsky, C. Stüer, R. Burger, J. Maeurer, D. G. Gordon, R. Schoenmayr, A. Friedlander, N. Knoller, K. Schmieder, I. Pechlivanis, I.-S. Kim, B. Mey-er, and M. Shoham, “Clinical Acceptance and Accuracy Assessment of Spinal Implants Guided With SpineAssist Surgical Robot,” Spine (Phila. Pa. 1976)., vol. 35, no. 24, pp. 2109–2115, Nov. 2010. [42] D. V. Amin and L. D. Lunsford, “Volumetric Resection Using the SurgiScope®: A Quanti-tative Accuracy Analysis of Robot-Assisted Resection,” Stereotact. Funct. Neurosurg., vol. 82, no. 5–6, pp. 250–253, Feb. 2005. [43] Q. H. Li, L. Zamorano, A. Pandya, R. Perez, J. Gong, and F. Diaz, “The application accu-racy of the NeuroMate robot - A quantitative comparison with frameless and frame-based surgical localization systems,” Comput. Aid-ed Surg., vol. 7, no. 2, pp. 90–98, 2002. [44] J. Gonzalez-Martinez, S. Vadera, J. Mullin, R. Enatsu, A. V Alexopoulos, R. Patwardhan, W. Bingaman, and I. Najm, “Robot-Assisted Stereotactic Laser Ablation in Medically In-tractable Epilepsy,” Oper. Neurosurg., vol. 10, no. 2, pp. 167–173, Jun. 2014. [45] L. M. Auer, S. Starkie, D. P. Auer, and B. Davies, “Simulating minimally invasive neu-rosurgical interventions using an active ma-nipulator,” Int. Congr. Ser., vol. 1247, pp. 199–210, Dec. 2002. [46] G. Deacon, A. Harwood, J. Holdback, D. Maiwand, M. Pearce, I. Reid, M. Street, and J. Taylor, “The Pathfinder image-guided sur-gical robot,” Proc. Inst. Mech. Eng. Part H J. Eng. Med., vol. 224, no. 5, pp. 691–713, May 2010. [47] C. Nimsky, J. Rachinger, H. Iro, and R. Fahlbusch, “Adaptation of a Hexapod-Based Robotic System for Extended Endoscope-Assisted Transsphenoidal Skull Base Sur-gery,” min - Minim. Invasive Neurosurg., vol. 47, no. 1, pp. 41–46, Feb. 2004. [48] K. Bekelis, T. A. Radwan, A. Desai, and D. W. Roberts, “Frameless robotically targeted stereotactic brain biopsy: feasibility, diagnos-tic yield, and safety,” J. Neurosurg., vol. 116, no. 5, pp. 1002–1006, May 2012. [49] J. Hao, X. Xie, G.-B. Bian, Z.-G. Hou, and X.-H. Zhou, “Development of a multi-modal in-teractive system for Endoscopic Endonasal Approach surgery simulation,” in 2016 IEEE International Conference on Robotics and Bi-omimetics (ROBIO), 2016, pp. 143–148. [50] L. Zrinzo, “Pitfalls in precision stereotactic surgery,” Surg. Neurol. Int., vol. 3, no. 2, p. 53, 2012. [51] H. J. Marcus, C. A. Seneci, C. J. Payne, D. Nandi, A. Darzi, and G.-Z. Yang, “Robotics in Keyhole Transcranial Endoscope-Assisted Microsurgery,” Oper. Neurosurg., vol. 10, no. 1, pp. 84–96, Mar. 2014. [52] T. A. Mattei, A. H. Rodriguez, D. Sambhara, and E. Mendel, “Current state-of-the-art and future perspectives of robotic technology in neurosurgery,” Neurosurg. Rev., vol. 37, no. 3, pp. 357–366, 2014. [53] M. N. Huda, H. Yu, and S. Cang, “Robots for minimally invasive diagnosis and interven-tion,” Robot. Comput. Integr. Manuf., vol. 41, pp. 127–144, Oct. 2016. [54] C. DeLorenzo, X. Papademetris, L. H. Staib, K. P. Vives, D. D. Spencer, and J. S. Duncan, “Volumetric Intraoperative Brain Defor-mation Compensation: Model Development and Phantom Validation,” IEEE Trans. Med. Imaging, vol. 31, no. 8, pp. 1607–1619, Aug. 2012. [55] I. Chen, R. E. Ong, A. L. Simpson, K. Sun, R. C. Thompson, and M. I. Miga, “Integrating Retraction Modeling Into an Atlas-Based Framework for Brain Shift Prediction,” IEEE Trans. Biomed. Eng., vol. 60, no. 12, pp. 3494–3504, Dec. 2013. [56] M. Oldfield, D. Dini, G. Giordano, and F. Rodriguez y Baena, “Detailed finite element modelling of deep needle insertions into a soft tissue phantom using a cohesive ap-proach,” Comput. Methods Biomech. Biomed. Engin., vol. 16, no. 5, pp. 530–543, May 2013. [57] L. W. Clements, J. A. Collins, J. A. Weis, A. L. Simpson, L. B. Adams, W. R. Jarnagin, and M. I. Miga, “Evaluation of model-based deformation correction in image-guided liver surgery via tracked intraoperative ultra-sound,” J. Med. Imaging, vol. 3, no. 1, p. 15003, Mar. 2016. [58] M. Schulder and P. W. Carmel, “Intraopera-tive magnetic resonance imaging: impact on brain tumor surgery.” Cancer Control, vol. 10, no. 2, pp. 115–24, 2003. [59] N. Nakao, K. Nakai, and T. Itakura, “Updat-ing of Neuronavigation Based on Images In-traoperatively Acquired with a Mobile Com-puterized Tomographic Scanner: Technical Note,” min - Minim. Invasive Neurosurg., vol. 46, no. 2, pp. 117–120, Apr. 2003. [60] D. G. Gobbi, R. M. Comeau, and T. M. Pe-ters, “Ultrasound/MRI Overlay with Image Warping for Neurosurgery,” in Medical Im-age Computing and Computer-Assisted In-tervention--MICCAI 2000, 2000, pp. 29–53. [61] S. Mittal and P. M. Black, “Intraoperative magnetic resonance imaging in neurosur-gery: the Brigham concept.” Acta Neurochir. Suppl., vol. 98, pp. 77–86, 2006. [62] H. O. Yegingil, “Breast cancer detection and differentiation using piezoelectric fingers,” 2009. [63] R. Fahlbusch and A. Samii, “A review of cranial imaging techniques: potential and limitations.” Clin. Neurosurg., vol. 54, pp. 100–4, 2007. [64] M. M. J. Letteboer, P. W. A. Willems, M. A. Viergever, and W. J. Niessen, “Brain Shift Estimation in Image-Guided Neurosurgery Using 3-D Ultrasound,” IEEE Trans. Bio-med. Eng., vol. 52, no. 2, pp. 268–276, Feb. 2005. [65] P. Coupe, P. Hellier, X. Morandi, and C. Barillot, “Intraoperative ultrasonography for the correction of brainshift based on the matching of hyperechogenic structures,” in 2010 IEEE International Symposium on Bi-omedical Imaging: From Nano to Macro, 2010, pp. 1405–1408. [66] C. E. Uff, L. Garcia, J. Fromageau, N. Dor-ward, and J. C. Bamber, “Real-time ultra-sound elastography in neurosurgery,” in 2009 IEEE International Ultrasonics Sympo-sium, 2009, pp. 467–470. [67] J. Weickenmeier, C. A. M. Butler, P. G. Young, A. Goriely, and E. Kuhl, “The me-chanics of decompressive craniectomy: Per-sonalized simulations,” Comput. Methods Appl. Mech. Eng., vol. 314, pp. 180–195, Feb. 2017. [68] A. Mohammadi, A. Ahmadian, S. Rabbani, E. Fattahi, and S. Shirani, “A combined regis-tration and finite element analysis method for fast estimation of intraoperative brain shift; phantom and animal model study,” Int. J. Med. Robot. Comput. Assist. Surg., 2016. [69] A. Mohammadi, A. Ahmadian, A. D. Azar, A. D. Sheykh, F. Amiri, and J. Alirezaie, “Esti-mation of intraoperative brain shift by com-bination of stereovision and doppler ultra-sound: phantom and animal model study,” Int. J. Comput. Assist. Radiol. Surg., vol. 10, no. 11, pp. 1753–1764, Nov. 2015. [70] M. I. Miga, K. Sun, I. Chen, L. W. Clements, T. S. Pheiffer, A. L. Simpson, and R. C. Thompson, “Clinical evaluation of a model-updated image-guidance approach to brain shift compensation: experience in 16 cases,” Int. J. Comput. Assist. Radiol. Surg., vol. 11, no. 8, pp. 1467–1474, Aug. 2016. [71] N. Hamze, A. Bilger, C. Duriez, S. Cotin, and C. Essert, “Anticipation of brain shift in Deep Brain Stimulation automatic plan-ning,” in 2015 37th Annual International Conference of the IEEE Engineering in Medi-cine and Biology Society (EMBC), 2015, pp. 3635–3638. [72] A. L. Simpson, Kay Sun, T. S. Pheiffer, D. C. Rucker, A. K. Sills, R. C. Thompson, and M. I. Miga, “Evaluation of Conoscopic Holog-raphy for Estimating Tumor Resection Cavi-ties in Model-Based Image-Guided Neuro-surgery,” IEEE Trans. Biomed. Eng., vol. 61, no. 6, pp. 1833–1843, Jun. 2014. [73] Kay Sun, T. S. Pheiffer, A. L. Simpson, J. A. Weis, R. C. Thompson, and M. I. Miga, “Near Real-Time Computer Assisted Surgery for Brain Shift Correction Using Biomechanical Models,” IEEE J. Transl. Eng. Heal. Med., vol. 2, pp. 1–13, 2014. [74] N. D. Serej, A. Ahmadian, S. Mohagheghi, and S. M. Sadrehosseini, “A projected land-mark method for reduction of registration er-ror in image-guided surgery systems,” Int. J. Comput. Assist. Radiol. Surg., vol. 10, no. 5, pp. 541–554, May 2015. [75] G. R. Joldes, A. Wittek, and K. Miller, “Real-time nonlinear finite element computations on GPU – Application to neurosurgical simu-lation,” Comput. Methods Appl. Mech. Eng., vol. 199, no. 49–52, pp. 3305–3314, Dec. 2010. [76] Chenxi Zhang, Manning Wang, and Zhijian Song, “A Brain-Deformation Framework Based on a Linear Elastic Model and Evalua-tion Using Clinical Data,” IEEE Trans. Bio-med. Eng., vol. 58, no. 1, pp. 191–199, Jan. 2011. [77] M. Bucki, O. Palombi, M. Bailet, and Y. Payan, “Doppler ultrasound driven biome-chanical model of the brain for intraopera-tive brain-shift compensation: a proof of con-cept in clinical conditions,” in Soft tissue biomechanical modeling for computer assist-ed surgery, Springer, 2012, pp. 135–165. [78] D.-X. Zhuang, Y.-X. Liu, J.-S. Wu, C.-J. Yao, Y. Mao, C.-X. Zhang, M.-N. Wang, W. Wang, and L.-F. Zhou, “A Sparse Intraoperative Da-ta-Driven Biomechanical Model to Compen-sate for Brain Shift during Neuronaviga-tion,” Am. J. Neuroradiol., vol. 32, no. 2, pp. 395–402, Feb. 2011. [79] S. Budday, P. Steinmann, and E. Kuhl, “The role of mechanics during brain development,” J. Mech. Phys. Solids, vol. 72, pp. 75–92, Dec. 2014. [80] R. de Rooij and E. Kuhl, “Constitutive Model-ing of Brain Tissue: Current Perspectives,” Appl. Mech. Rev., vol. 68, no. 1, p. 10801, Jan. 2016. [81] S. A. Kruse, G. H. Rose, K. J. Glaser, A. Manduca, J. P. Felmlee, C. R. Jack, and R. L. Ehman, “Magnetic resonance elastography of the brain,” Neuroimage, vol. 39, no. 1, pp. 231–237, Jan. 2008. [82] A. Fukuhara, T. Tsujita, K. Sase, A. Konno, X. Jiang, S. Abiko, and M. Uchiyama, “Opti-mization of retraction in neurosurgery to avoid damage caused by deformation of brain tissues,” in 2014 IEEE International Confer-ence on Robotics and Biomimetics (ROBIO 2014), 2014, pp. 588–594. [83] Hang Zhou and H. Rivaz, “Robust deforma-ble registration of pre- and post-resection ul-trasound volumes for visualization of residu-al tumor in neurosurgery,” in 2015 37th An-nual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015, pp. 141–144. [84] J. Weickenmeier, P. Saez, C. A. M. Butler, P. G. Young, A. Goriely, and E. Kuhl, “Bulging Brains,” J. Elast., vol. 129, no. 1–2, pp. 1–16, Dec. 2017. [85] S. Budday, P. Steinmann, and E. Kuhl, “Physical biology of human brain develop-ment,” Front. Cell. Neurosci., vol. 9, Jul. 2015. [86] G. Broggi, “A Journey in Neurosurgery,” World Neurosurg. vol. 80, no. 1–2, pp. 28–38, Jul. 2013. [87] W. A. Hall and C. L. Truwit, “Intraoperative MR-guided neurosurgery,” J. Magn. Reson. Imaging, vol. 27, no. 2, pp. 368–375, Feb. 2008. | |
dc.rights | Copyright (c) 2017 https://creativecommons.org/licenses/by/3.0/deed.es_ES | en-US |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/4.0 | en-US |
dc.source | TecnoLógicas; Vol. 20 No. 40 (2017); 125-138 | en-US |
dc.source | TecnoLógicas; Vol. 20 Núm. 40 (2017); 125-138 | es-ES |
dc.source | 2256-5337 | |
dc.source | 0123-7799 | |
dc.subject | Neurosurgery | en-US |
dc.subject | brain shift | en-US |
dc.subject | medical robotics | en-US |
dc.subject | neuronavigation | en-US |
dc.subject | minimally invasive surgery | en-US |
dc.subject | Neurocirugía | es-ES |
dc.subject | desplazamiento cerebral | es-ES |
dc.subject | robótica médica | es-ES |
dc.subject | neuronavegación | es-ES |
dc.subject | cirugía mínimamente invasiva | es-ES |
dc.title | Neurosurgery and brain shift: review of the state of the art and main contributions of robotics | en-US |
dc.title | Neurocirugía y desplazamientos cerebrales: una revisión del estado del arte y principales contribuciones desde la robótica | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Review Article | en-US |
dc.type | Artículos de revisión | es-ES |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
tecnologia [520]