Mostrar el registro sencillo del ítem

Desarrollo e implementación de tecnologías para telerehabilitación física en América Latina: una revisión sistemática de literatura, programas y proyectos

dc.creatorNarváez, Fabián
dc.creatorMarín-Castrillón, Diana M.
dc.creatorCuenca, Ma. Cisne
dc.creatorLatta, Ma. Augusta
dc.date2017-09-04
dc.date.accessioned2021-03-18T21:06:52Z
dc.date.available2021-03-18T21:06:52Z
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/721
dc.identifier10.22430/22565337.721
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/11714
dc.descriptionTelerehabilitation has arised by the inclusion of emerging technologies for capturing, transmitting, analyzing and visualizing movement patterns associated to musculoskeletal disorders. This therapeutic strategy enables to carry out diagnosis processes and provide rehabilitation treatments. This paper presents a systematic review of the current development and implementation of telerehabilitation technologies in Latin America. The main goal is to explore the scientific literature and dissemination sources to establish if such technologies have been introduced in this region. Likewise, this work highlights existing prototypes or systems that are to being used or that are still under development. A systematic search strategy was conducted by two different searches: the first one involves a rigorous literature search from the most relevant scientific digital repositories; the second one included telerehabilitation projects and programs retrieved by an advanced Google search. A total of 53 documents from six countries (Colombia, Brazil, Mexico, Ecuador, Chile and Argentina) were found. Most of them were focused on academic and research initiatives to develop in-home telerehabilitation technologies for pediatric and elderly populations affected by motor and functional impairment, cerebral palsy, neurocognitive disorders and stroke. The analysis of the findings revealed the need for a comprehensive approach that integrates health care and the social system to increase the current availability of telerehabilitation initiatives in Latin America.en-US
dc.descriptionLa telerehabilitation ha surgido debido a la inclusión de tecnologías emergentes para la captura, transmisión, análisis y visualización de patrones de movimiento asociados a pacientes con trastornos músculo-esqueléticos. Esta estrategia permite llevar a cabo procesos de diagnóstico y tratamientos de rehabilitación a distancia. Este artículo presenta una revisión sistemática del desarrollo e implementación actual de las tecnologías de telerehabilitación en la región latinoamericana. El objetivo principal es explorar, a partir de la literatura científica reportada y fuentes divulgativas, si las tecnologías de telerehabilitación han logrado ser introducidas en esta región. Asimismo, este trabajo revela los prototipos actuales o sistemas que están en desarrollo o que ya están siendo usados. Se llevó a cabo una revisión sistemática, mediante dos búsquedas diferentes. La primera implicó una búsqueda bibliográfica rigurosa en los repositorios digitales científicos más relevantes en el área y la segunda incluyó proyectos y programas de telerehabilitación implementados en la región, encontrados a partir de una búsqueda avanzada en Google. Se encontró un total de 53 documentos de seis países (Colombia, Brasil, México, Ecuador, Chile y Argentina); la mayoría de ellos estaban enfocados en iniciativas académicas y de investigación para el desarrollo de prototipos tecnológicos para telerehabilitación de pacientes pediátricos y adultos mayores, afectados por deficiencias motoras o funcionales, parálisis cerebral, enfermedades neurocognitivas y accidente cerebrovascular. El análisis de estos documentos reveló la necesidad de un extenso enfoque integrado de salud y sistema social para aumentar la disponibilidad actual de iniciativas de telerehabilitación en la región latinoamericana.es-ES
dc.formatapplication/pdf
dc.languageeng
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/721/701
dc.relation/*ref*/OMS, “Informe mundial sobre la discapacidad,” World Health Organization, 2011. [2] M. F. Stang Alva, Las personas con discapacidad en america Latina: del reconocimiento juridico a la desigualdad real. 2011. [3] A. Vásquez, “La discapacidad en América Latina,” Discapacidad. Lo que todos debemos saber, Organ. Panam. la Salud, 2006. [4] F. Caravaca, B. Gonzales, M. Á. Bayo, and E. Luna, “Dolor músculo-esquelético en pacientes con enfermedad renal crónica,” Nefrología, vol. 36, no. 4, pp. 433–440, Jul. 2016. [5] N. Heredia, “El derecho a la salud: ¿cuál es el modelo para América Latina?,” MEDICC Rev., vol. 17, no. 14, pp. 16–18, 2015. [6] S. Schkolnik, “América Latina: la medición de la discapacidad a partir de los censos y fuentes alternativas,” in Los censos de 2010 y la salud: informe del seminario-taller, CEPAL, Ed. 2010. [7] P. C. de Andrade, L. O. M., Pellegrini, F. A., Solar, O., Rígoli, F., de Salazar, L. M., & Serrate, “Determinantes sociales de salud, cobertura universal de salud y desarrollo sostenible: estudios de caso en países latinoamericanos,” in MEDICC Review, vol. 17, no. 1, 2015, pp. s53--s61. [8] D. Hailey, R. Roine, A. Ohinmaa, and L. Dennett, “Evidence of benefit from telerehabilitation in routine care: a systematic review,” J. Telemed. Telecare, vol. 17, no. 6, pp. 281–287, Sep. 2011. [9] M. Tousignant, H. Moffet, S. Nadeau, C. Mérette, P. Boissy, H. Corriveau, F. Marquis, F. Cabana, P. Ranger, É. L. Belzile, and R. Dimentberg, “Cost Analysis of In-Home Telerehabilitation for Post-Knee Arthroplasty,” J. Med. Internet Res., vol. 17, no. 3, p. e83, Mar. 2015. [10] R. M. Bendixen, C. E. Levy, E. S. Olive, R. F. Kobb, and W. C. Mann, “Cost Effectiveness of a Telerehabilitation Program to Support Chronically Ill and Disabled Elders in Their Homes,” Telemed. e-Health, vol. 15, no. 1, pp. 31–38, 2009. [11] “Informe de Gestión Fundación Teletón 2016,” 2016. [12] S. Dhurjaty, “The Economics of Telerehabilitation,” Telemed. J. e-Health, vol. 10, no. 2, pp. 196–199, Jun. 2004. [13] A. Peretti, F. Amenta, S. K. Tayebati, G. Nittari, and S. S. Mahdi, “Telerehabilitation: Review of the State-of-the-Art and Areas of Application,” JMIR Rehabil. Assist. Technol., vol. 4, no. 2, p. e7, Jul. 2017. [14] R. Salviola, “Effect of a Telemonitoring Intervention on Health Outcomes Among Patients at Risk for Progression of Heart Disease,” A.T. Still University, 2016. [15] D. Antón, A. Goñi, and A. Illarramendi, “Exercise Recognition for Kinect-based Telerehabilitation,” Methods Inf. Med., vol. 54, no. 2, pp. 145–155, Oct. 2014. [16] J. Rodiz Cuevas, E. Lopez Dominguez, and Y. Hernandez Velazquez, “Telemonitoring System for Patients with Chronic Kidney Disease Undergoing Peritoneal Dialysis,” IEEE Lat. Am. Trans., vol. 14, no. 4, pp. 2000–2006, 2016. [17] L. J. V. Escobar and S. A. Salinas, “e-Health prototype system for cardiac telemonitoring,” in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016, pp. 4399–4402. [18] S. Lovo Grona, B. Bath, A. Busch, T. Rotter, C. Trask, and E. Harrison, “Use of videoconferencing for physical therapy in people with musculoskeletal conditions: a systematic review,” J. Telemed. Telecare, p. 1357633X1770078, 2017. [19] D. M. Brennan, P. S. Lum, G. Uswatte, E. Taub, B. M. Gilmore, and J. Barman, “A telerehabilitation platform for home-based automated therapy of arm function,” in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, pp. 1819–1822. [20] J. Gutierrez-Martinez and A. Ortiz-Espinosa, “System to measure the range of motion of the joints of the human hand,” Rev. Investig. Clin., vol. 66, pp. 122–130, 2014. [21] Y. Rybarczyk, J. K. Deters, A. A. Gonzalvo, M. Gonzalez, S. Villarreal, and D. Esparza, “ePHoRt Project: A Web-Based Platform for Home Motor Rehabilitation,” in World Conference on, Springer, Cham, 2017, pp. 609–618. [22] C. Rodriguez-de-Pablo, S. Balasubramanian, A. Savic, T. D. Tomic, L. Konstantinovic, and T. Keller, “Validating ArmAssist Assessment as outcome measure in upper-limb post-stroke telerehabilitation,” in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015, pp. 4623–4626. [23] A. Briseño-Cerón, O. Domínguez-Ugalde, and I. Saucedo-Ugalde, “El uso de captura de movimiento corporal para el análisis de discapacidades en miembros superior o inferior: Caso de uso: hemiplejia,” Rev. Int. Tecnol. Cienc. y Soc., vol. 1, no. 2, Jun. 2012. [24] E. Pedreira da Fonseca, N. M. Ribeiro da Silva, and E. B. Pinto, “Therapeutic Effect of Virtual Reality on Post-Stroke Patients: Randomized Clinical Trial,” J. Stroke Cerebrovasc. Dis., vol. 26, no. 1, pp. 94–100, 2017. [25] M. Callejas Cuervo, G. M. Díaz, and A. F. Ruíz-Olaya, “Integration of emerging motion capture technologies and videogames for human upper-limb telerehabilitation: A systematic review,” DYNA, vol. 82, no. 189, pp. 68–75, Feb. 2015. [26] P. F. Monserrat, F. Llull, M. M. Aguilo, J. S. Terrasa, and Y. Gonzalez-Cid, “P4H: An example of successful use of serious games in telerehabilitation,” in 2015 Internet Technologies and Applications (ITA), 2015, pp. 261–265. [27] D. Anton, A. Goni, A. Illarramendi, J. J. Torres-Unda, and J. Seco, “KiReS: A Kinect-based telerehabilitation system,” in 2013 IEEE 15th International Conference on e-Health Networking, Applications and Services (Healthcom 2013), 2013, no. Healthcom, pp. 444–448. [28] N. M. da Silva Ribeiro, D. D. Ferraz, É. Pedreira, Í. Pinheiro, A. C. da Silva Pinto, M. G. Neto, L. R. A. dos Santos, M. G. G. Pozzato, R. S. Pinho, and M. R. Masruha, “Virtual rehabilitation via Nintendo Wii®and conventional physical therapy effectively treat post-stroke hemiparetic patients,” Top. Stroke Rehabil., vol. 22, no. 4, pp. 299–305, 2015. [29] B. Lange, S. Koenig, C.-Y. Chang, E. McConnell, E. Suma, M. Bolas, and A. Rizzo, “Designing informed game-based rehabilitation tasks leveraging advances in virtual reality,” Disabil. Rehabil., vol. 34, no. 22, pp. 1863–1870, Nov. 2012. [30] A. Nayak, “A pilot study: Effect of a novel dual-task treadmill walking program on balance, mobility, gaze and cognition in community dwelling older adults,” University of Manitoba, 2015. [31] J. B. H. Gutiérrez, “Efecto de un programa de rehabilitación virtual con Nintendo Wii Balance Board®en un grupo de pacientes de lesión medular establecida en la Clínica Universidad de La Sabana: Un estudio piloto,” Universidad de la Sabana, 2013. [32] G. C. Burdea, A. Jain, B. Rabin, R. Pellosie, and M. Golomb, “Long-term hand tele-rehabilitation on the playstation 3: Benefits and challenges,” in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, pp. 1835–1838. [33] K. E. Laver, S. George, S. Thomas, J. E. Deutsch, and M. Crotty, “Virtual reality for stroke rehabilitation,” in Cochrane Database of Systematic Reviews, K. E. Laver, Ed. Chichester, UK: John Wiley & Sons, Ltd, 2015. [34] K. I. Ustinova, J. Perkins, W. A. Leonard, C. D. Ingersoll, and C. Hausebeck, “Virtual reality game-based therapy for persons with TBI: A pilot study,” in 2013 International Conference on Virtual Rehabilitation (ICVR), 2013, pp. 87–93. [35] Y. Zuleima Ordóñez, C. Andrés Luna, and C. Felipe Rengifo, “Herramienta de Entrenamiento Virtual en 2-D para Rehabilitación de Motricidad Fina en Miembro Superior con Incorporación de un Dispositivo Háptico (software para rehabilitación fina en miembro superior),” Rev. Ing. Biomédica, vol. 7, no. 14, pp. 60–68, 2013. [36] Z. Xu, R. Fiebrink, and Y. Matsuoka, “Virtual therapist: A Phantom robot-based haptic system for personalized post-surgery finger rehabilitation,” in 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2012, pp. 1662–1667. [37] I. D. Plazas-Roa and A. F. Ruiz-Olaya, “A Tele-robotic System for Real-Time Remote Evaluation of Upper-Limb Function,” in VI Latin American Congress on Biomedical Engineering, 2015, pp. 230–233. [38] V. Abraham, “The use of robotic/computer assistive technologies (R/CAT) during upper limb rehabilitation therapy sessions,” Int. J. Stroke, vol. 10, no. S3, 2015. [39] A. F. Ruiz-Olaya, “Towards a robotic exoskeleton for remote evaluation of elbow and wrist joints,” in 2015 International Conference on Virtual Rehabilitation (ICVR), 2015, pp. 174–175. [40] G. D. Sosa, J. Sanchez, and H. Franco, “Improved front-view tracking of human skeleton from Kinect data for rehabilitation support in Multiple Sclerosis,” in 2015 20th Symposium on Signal Processing, Images and Computer Vision (STSIVA), 2015, pp. 1–7. [41] G. D. Voinea and G. Mogan, “Development of a Wearable Scoliosis Monitoring System Using Inertial Sensors,” Appl. Mech. Mater., vol. 811, pp. 353–358, Nov. 2015. [42] M. Callejas-Cuervo, J. C. Alvarez, and D. Alvarez, “Capture and analysis of biomechanical signals with inertial and magnetic sensors as support in physical rehabilitation processes,” in 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN), 2016, pp. 119–123. [43] Joonbum Bae, Wenlong Zhang, and M. Tomizuka, “Network-Based Rehabilitation System for Improved Mobility and Tele-Rehabilitation,” IEEE Trans. Control Syst. Technol., vol. 21, no. 5, pp. 1980–1987, Sep. 2013. [44] W. Alcocer, L. Vela, A. Blanco, J. Gonzalez, and M. Oliver, “Major trends in the development of ankle rehabilitation devices,” DYNA, vol. 79, no. 176, pp. 45–55, 2012. [45] M. C. Cuervo, A. F. R. Olaya, and R. M. G. Salamanca, “Biomechanical motion capture methods focused on tele-physiotherapy,” in 2013 Pan American Health Care Exchanges (PAHCE), 2013, no. September, pp. 1–6. [46] A. Liberati, D. G. Altman, J. Tetzlaff, C. Mulrow, P. C. Gøtzsche, J. P. A. Ioannidis, M. Clarke, P. J. Devereaux, J. Kleijnen, and D. Moher, “The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration,” PLoS Med., vol. 6, no. 7, p. e1000100, Jul. 2009. [47] “Proyecto Telerehabilitación fundación IDEAL.” [Online]. Available: http://www.fundacionideal.org.co/proyectos/proyecto-telerehabilitación-fundacion-ideal. [Accessed: 23-May-2017]. [48] L. Yunda, L. F. G. Ortega, S. Rodríguez, and R. M. Muñoz, “Plataforma Web para un nuevo modelo de telerehabilitación, de base comunal, en áreas rurales,” Sist. y Telemática, vol. 9, no. 19, pp. 55–67, 2011. [49] M. Callejas-Cuervo, M. A. Vélez-Guerrero, A. F. Ruíz-Olaya, and R. M. Gutiérrez-Salamanca, “Architecture proposal for a support system to upper limb telerehabilitation by capturing biomechanical signals,” Rev. Fac. Ing., vol. 24, no. 40, pp. 43–50, 2015. [50] M. Callejas-Cuervo, A. F. Ruíz-Olaya, and R. M. Gutiérrez, “Validación de una plataforma basada en sensores inerciales para adquirir información cinemática de estimación del ángulo articular humano,” DYNA, vol. 83, no. 197, p. 153, Jun. 2016. [51] M. Callejas-Cuervo, R. M. Gutierrez, and A. I. Hernandez, “Joint amplitude MEMS based measurement platform for low cost and high accessibility telerehabilitation: Elbow case study,” J. Bodyw. Mov. Ther., vol. 21, no. 3, pp. 574–581, Jul. 2017. [52] A. Uribe-Quevedo and B. Kapralos, “Exergaming for Shoulder-Based Exercise and Rehabilitation,” in Recent Advances in Technologies for Inclusive Well-Being, Springer, Cham, 2017, pp. 105–125. [53] N. F. Nascimento, “Treino com realidade virtual no alcance manual de crianças com paralisia cerebral: ensaio clínico randomizado cruzado,” Universidade Federal Do Rio Grande Do Norte, 2015. [54] M. Araújo, M. K. Postól, and A. D. Bruckheimer, “Realidade virtual: efeitos na recuperação do membro superior de pacientes hemiparéticos por acidente vascular cerebral,” Arq. Catarinenses Med., vol. 43, no. 1, pp. 15–20, 2014. [55] Fabiana Rita Camara Machado, “Uso do Kinect® na reabilitação motora de crianças com paralisia cerebral,” Fundação Universidade Federal de Ciências da Saúde de Porto Alegre, 2014. [56] M. R. Marques, “Viabilidade do uso de ferramentas de telereabilitação para o acompanhamento à distância de pacientes com sequelas pós-acidente vascular cerebral,” Universidade de Sao Paulo, 2014. [57] J. F. L.-H. John E. Muñoz-Cardona, Oscar A. Henao-Gallo, “Sistema de Rehabilitación basado en el Uso de Análisis Biomecánico y Videojuegos mediante el Sensor Kinect,” Tecno Lógicas, pp. 43–54, 2013. [58] G. G. Ito, “Sistema mecatrônico para reabilitação pós fratura da extremidade distal do rádio,” University of São Paulo, 2011. [59] A. Uribe, “Desenvolvimento de dispositivo para membro inferior com deficiência parcial,” Universidade Estadual de Campinas, 2011. [60] K. L. Nogueira, “Um framework de realidade virtual e aumentada para apoio a sistemas de reabilitação,” Universidade Federal de Uberlandia, 2014. [61] M. C. DOrnellas, D. J. Cargnin, and A. L. C. Prado, “Thoroughly Approach to Upper Limb Rehabilitation Using Serious Games for Intensive Group Physical Therapy or Individual Biofeedback Training,” in 2014 Brazilian Symposium on Computer Games and Digital Entertainment, 2014, pp. 140–147. [62] D. J. Cargnin, M. C. D’Ornellas, and A. L. C. Prado, “A Serious Game for Upper Limb Stroke Rehabilitation Using Biofeedback and Mirror-Neurons Based Training.,” MedInfo, 2015. [63] A. V. Soares, S. S. Woellner, C. dos S. Andrade, T. J. Mesadri, A. D. Bruckheimer, and M. da S. Hounsell, “The use of Virtual Reality for upper limb rehabilitation of hemiparetic Stroke patients,” Fisioter. em Mov., vol. 27, no. 3, pp. 309–317, Sep. 2014. [64] F. Noveletto, P. Bertemes-Filho, M. S. Hounsell, and A. V Soares, “A Serious Game for Training and Evaluating the Balance of Hemiparetic Stroke Patients,” in World Congress on Medical Physics and Biomedical Engineering, 2015, pp. 1128–1131. [65] “Primer centro de rehabilitación Virtual en Mexico | Virtualware.” [Online]. Available: http://virtualwaregroup.com/es/noticias/primer-centro-rehabilitacion-virtual-mexico. [Accessed: 13-Jul-2017]. [66] B. Maldonado, M. Mendoza, I. Bonilla, and I. Reyna-Gutierrez, “Stiffness-based tuning of an adaptive impedance controller for robot-assisted rehabilitation of upper limbs,” in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015, pp. 3578–3581. [67] M. Mendoza, I. Bonilla, E. González-Galván, and F. Reyes, “Impedance control in a wave-based teleoperator for rehabilitation motor therapies assisted by robots,” Comput. Methods Programs Biomed., vol. 123, pp. 54–67, 2016. [68] T. A. C. Aguilar, B. V Manrique, and J. A. Torrejon, “Development of a Mechatronic Device for Arm Rehabilitation,” in 2do Congreso Internacional de Sistemas Embebidos y Mecatrónica, 2016, pp. 23–27. [69] K. Bustamante Valles, S. Montes, M. de J. Madrigal, A. Burciaga, M. E. Martínez, and M. J. Johnson, “Technology-assisted stroke rehabilitation in Mexico: a pilot randomized trial comparing traditional therapy to circuit training in a Robot/technology-assisted therapy gym,” J. Neuroeng. Rehabil., vol. 13, no. 1, p. 83, 2016. [70] C. E. López Padilla, J. L. Acosta García, W. C. Perez, M. A. Lugo Villeda, G. I. ellez Rodríguez, and I. Saucedo Ugalde, “Interfaz Háptica Teleperada para Rehabilitación Pediatríca,” in Memorias del XV Congreso Mexicano de Rob´ otica, 2014. [71] J. Andrés, S. Castro, G. Irene, T. Rodríguez, A. B. Cerón, I. S. Ugalde, D. Aydee, and R. Vega, “Desarrollo del Entorno Virtual y Auditivo de una Plataforma Háptica para Rehabilitación Neurolingüística y Motriz,” in XV COMROB, 2013. [72] C. Ramírez-Fernández, E. García-Canseco, A. L. Morán, O. Pabloff, D. Bonilla, N. Green, and V. Meza-Kubo, “GoodVybesConnect: A Real-Time Haptic Enhanced Tele-Rehabilitation System for Massage Therapy,” in Computing and Ambient …, Springer, Cham, 2016, pp. 487–496. [73] G. Borrego, A. L. Morán, A. LaFlor, V. Meza, E. García-Canseco, F. Orihuela-Espina, and L. E. Sucar, “Pilot Evaluation of a Collaborative Game for Motor Tele-Rehabilitation and Cognitive Stimulation of the Elderly,” in Lecture Notes in Computer Science, Springer, Cham, 2015, pp. 42–48. [74] S. I. Macías-Hernández, D. S. Vásquez-Sotelo, M. V. Ferruzca-Navarro, S. H. Badillo Sánchez, J. Gutiérrez-Martínez, M. A. Núñez-Gaona, H. A. Meneses, O. B. Velez-Gutiérrez, I. Tapia-Ferrusco, M. de los Á. Soria-Bastida, R. Coronado-Zarco, and J. D. Morones-Alba, “Proposal and Evaluation of a Telerehabilitation Platform Designed for Patients With Partial Rotator Cuff Tears: A Preliminary Study,” Ann. Rehabil. Med., vol. 40, no. 4, p. 710, 2016. [75] G. Palacios-Navarro, S. Albiol-Pérez, and I. García-Magariño, “A Kinect-Based Virtual Reality System for Parkinson Disease Rehabilitation,” in New Contributions in Information Systems and Technologies, Springer, Cham, 2015, pp. 1133–1139. [76] S. Albiol-Pérez, E.-P. Pruna-Panchi, I.-P. Escobar-Anchaguano, J.-G. Bucheli-Andrade, M.-A. Pilatasig-Panchi, L.-E. Mena-Mena, J. Segovia-Chávez, A. Bernis, and P. Zumbana, “Acceptance and Suitability of a Novel Virtual System in Chronic Acquired Brain Injury Patients,” in New Advances in Information Systems and Technologies, Springer, Cham, 2016, pp. 1065–1071. [77] S. Albiol-Pérez, E.-P. Pruna-Panchi, I.-P. Escobar-Anchaguano, M.-A. Pilatasig-Panchi, L.-E. Mena-Mena, J. Segovia-Chávez, A. Bernis, and P. Zumbana, “A Neurocognitive Virtual Rehabilitation System for Children with Cerebral Palsy: A Preliminary Usability Study,” in New Advances in Information Systems and Technologies, Springer, Cham, 2016, pp. 1057–1063. [78] E. Pruna, A. Acurio S., I. Escobar, S. A. Pérez, P. Zumbana, A. Meythaler, and F. A. Álvarez, “3D Virtual System Using a Haptic Device for Fine Motor Rehabilitation,” in Recent Advances in Information Systems and Technologies, Springer, Cham, 2017, pp. 648–656. [79] S. Albiol-Pérez, J. Mena-Cajas, I.-P. Escobar-Anchaguano, E.-P. Pruna-Panchi, and P. Zumbana, “Virtual fine rehabilitation in patients with carpal tunnel syndrome using low-cost devices,” in Proceedings of the 4th Workshop on ICTs for improving Patients Rehabilitation Research Techniques - REHAB ’16, 2016, pp. 61–64. [80] E. Pruna, W. López V., I. Escobar, E. D. Galarza, P. Zumbana, S. Albiol-Pérez, G. Ávila, and J. Bucheli, “Implementation of a Multipoint Virtual Goniometer (MVG) Trough Kinect-2 for Evaluation of the Upper Limbs,” in Recent Advances in Information Systems and Technologies, Springer, Cham, 2017, pp. 639–647. [81] Y. Rybarczyk, J. K. Deters, A. A. Gonzalo, D. Esparza, M. Gonzalez, S. Villarreal, and I. L. Nunes, “Recognition of Physiotherapeutic Exercises Through DTW and Low-Cost Vision-Based Motion Capture,” in Advances in Human Factors and Systems Interaction, Springer, Cham, 2018, pp. 348–360. [82] “Plataforma de tele-rehabilitación para adultos mayores con trastornos asociados a demencia, basada en tecnologías emergentes,” 2015. [Online]. Available: https://www.cedia.edu.ec/es/plataforma-de-tele-rehabilitacion-para-adultos-mayores-con-trastornos-asociados-a-demencia-basada-en-tecnologias-emergentes. [Accessed: 17-May-2017]. [83] “Kushkalla: Tele-Rehabilitation,” 2016. [Online]. Available: https://kushkalla.cedia.org.ec/. [Accessed: 17-May-2017]. [84] P. U. Caro, C. S. Siqués, R. B. Cubillos, and D. P. García, “Evaluación de satisfacción frente al uso del programa de telerehabilitación Rehabitic® para terapia física en niños con parálisis cerebral del Instituto Teletón Santiago. Estudio de 3 casos.” [85] “Virtualrehab | Teleton avanza en la implementación de las terapias de rehabilitacion.” [Online]. Available: http://www.virtualrehab.info/es/teleton-avanza-en-la-implementacion-de-las-terapias-de-rehabilitacion/. [Accessed: 23-May-2017]. [86] “Teletón participa en congreso sobre nuevas tecnologías en salud.” [Online]. Available: http://www.teleton.cl/noticias/teleton-participa-en-congreso-sobre-nuevas-tecnologias-en-salud/. [Accessed: 18-May-2017]. [87] “Hospital Italiano de Buenos Arires: Telerehabilitación Integral, Cognitiva y Kinésica.” [Online]. Available: https://www.hospitalitaliano.org.ar/#!/home/comercial/noticia/26767. [Accessed: 15-May-2017]. [88] F. J. Cáceres, “Neurorehabilitación en Esclerosis Múltiple: ¿Donde estamos?,” in Biogen MS Innovation, 2015. [89] C. Ferrarini Oliver, M. G. González de Doña, S. G. Zapata, L. A. L. Olguín, E. G. Ormeño, C. Ferrarini, M. González, S. G. Zapata, L. A. L. Olguín, and E. G. Ormeño, “MoVeR-T: Entorno de videojuego en Realidad Virtual Telecontrolado para Rehabilitación Motriz,” in XVIII Workshop de Investigadores en Ciencias de la Computación, 2016, pp. 621–625. [90] D. Chueke, “Panorama de la Telemedicina en América Latina,” eyeforpharma. 2015. [91] P. S. Archambault, N. G. Norouzi, D. Kairy, J. M. Solomon, and M. F. Levin, “Towards Establishing Clinical Guidelines for an Arm Rehabilitation Virtual Reality System,” in Replace, Repair, Restore, Relieve – Bridging Clinical and Engineering Solutions in Neurorehabilitation. Biosystems & Biorobotics, Springer, Cham, 2014, pp. 263–270.
dc.rightshttps://creativecommons.org/licenses/by/3.0/deed.es_ESen-US
dc.sourceTecnoLógicas; Vol. 20 No. 40 (2017); 155-176en-US
dc.sourceTecnoLógicas; Vol. 20 Núm. 40 (2017); 155-176es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectphysical telerehabilitationen-US
dc.subjectemerging technologiesen-US
dc.subjectreviewen-US
dc.subjectLatin Americaen-US
dc.subjecttelerehabilitación Físicaes-ES
dc.subjecttecnologías emergenteses-ES
dc.subjectrevisiónes-ES
dc.subjectLatinoaméricaes-ES
dc.titleDevelopment and implementation of technologies for physical telerehabilitation in Latin America:en-US
dc.titleDesarrollo e implementación de tecnologías para telerehabilitación física en América Latina: una revisión sistemática de literatura, programas y proyectoses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeReview Articleen-US
dc.typeArtículos de revisiónes-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem