Mostrar el registro sencillo del ítem

IMU-Mouse: diseño e implementación de un dispositivo apuntador dirigido al desarrollo de interfaces adaptativas para personas con discapacidad física

dc.creatorCastillo-Benavides, Camilo A.
dc.creatorGarcía-Arias, Luís F.
dc.creatorDuque-Méndez, Néstor . D
dc.creatorOvalle-Carranza, Demetrio A.
dc.date2018-01-15
dc.date.accessioned2021-03-18T21:06:52Z
dc.date.available2021-03-18T21:06:52Z
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/727
dc.identifier10.22430/22565337.727
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/11716
dc.descriptionThe correct application of ICTs (information and communications technologies) to the education of people with physical disabilities requires studies aimed to adapt interfaces. Controlling the design and implementation of input devices would contribute to develop interfaces tailored to the requirements of such context. The purpose of this work is to present the development and validation of the IMU-Mouse pointer device whose design and implementation is controlled—for researching interfaces that make the most of the interaction capabilities of the devices in adaptation processes. The purpose of the device is to address the needs created by physical disability in upper limps; hence it operates with head movements. Both actions of the IMU-Mouse, click and move, are performed by processing the data generated by an accelerometer and a gyroscope. The main interaction features of the IMU-Mouse were assessed by group of 13 people by means of a survey based on Annex C of ISO 9241-9 standard. The results lead to conclude that the device enables an effective interaction with the computer, as well as the identification of spaces for the application of hardware and software add-ons to support interaction.en-US
dc.descriptionLa aplicación adecuada de las TIC (Tecnologías de la Información y Comunicación) para el aprendizaje de personas con discapacidad física exige estudios dirigidos a la adaptación de interfaces. El control sobre el diseño e implementación de dispositivos de entrada contribuiría al desarrollo de interfaces capaces de atender las necesidades en el contexto descrito anteriormente. El objetivo de este trabajo es presentar el desarrollo y la validación del dispositivo apuntador IMU-Mouse, para el cual se tiene el control sobre su diseño e implementación dirigido a la investigación de interfaces, que hagan uso de las capacidades de interacción del aparato en los procesos de adaptación. El dispositivo está dirigido a atender las necesidades inducidas por la discapacidad física en extremidades superiores y por esto opera con los movimientos de la cabeza. Las acciones de clic y desplazamiento del IMU-Mouse se ejecutan a partir del procesamiento de los datos generados por un acelerómetro y un giroscopio. Los principales aspectos de la interacción fueron evaluados por un grupo de 13 personas mediante una encuesta basada en el anexo C del estándar ISO 9241-9. De acuerdo con los resultados obtenidos, se concluye que el dispositivo habilita una interacción efectiva con el computador, y además permiten la identificación de espacios para la aplicación de complementos de hardware y software para asistir las acciones de interacción.es-ES
dc.formatapplication/pdf
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/727/702
dc.relation/*ref*/M. Peissner, D. Häbe, and A. Schuller, “MyUI: Mainstreaming Accessibility through Synergistic User Modelling and Adaptability,” The University of Lowa, 2011. [2] K. Hinckley, “Input Technologies and Techniques,” in The Human-Computer Interaction Handbook: Fundamentals, Evolving Technologies and Emerging Applications, 2nd ed., A. Sears and J. A. Jacko, Eds. New York: Human Factors and Ergonomics, 2009, pp. 161–172. [3] C. Fichten, M. Barile, J. V Asuncion, and M. Fossey, “What government, agencies, and organizations can do to improve access to computers for postsecondary students with disabilities: Recommendations based on Canadian empirical data,” Int. J. Rehabil. Res., vol. 23, no. 3, pp. 191–199, 2000. [4] K. Z. Gajos, D. S. Weld, and J. O. Wobbrock, “Automatically generating personalized user interfaces with Supple,” Artif. Intell., vol. 174, no. 12–13, pp. 910–950, Aug. 2010. [5] B. Phillips and H. Zhao, “Predictors of Assistive Technology Abandonment,” Assist. Technol., vol. 5, no. 1, pp. 36–45, Jun. 1993. [6] K. Giotopoulos, C. Alexakos, G. Beligiannis, and A. Stefani, “Bringing AI to E-learning,” Int. J. Inf. Commun. Technol. Educ., vol. 6, no. 2, pp. 24–35, 2010. [7] P. A. Rodríguez, N. D. Duque, and D. A. Ovalle, “Método Híbrido de Recomendación Adaptativa de Objetos de Aprendizaje basado en Perfiles de Usuario,” Form. Univ., vol. 9, no. 4, pp. 83–94, 2016. [8] P. Brusilovsky and E. Millán, “User Models for Adaptive Hypermedia and Adaptive Educational Systems,” in The Adaptive Web, P. Brusilovsky, A. Kobsa, and W. Nejdl, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 3–53. [9] N. D. Duque Méndez, “Modelo Adaptativo Multi-Agente para la Planificación y Ejecución de Cursos Virtuales Personalizados,” Universidad Nacional de Colombia, 2009. [10] T. C. Davies, S. Mudge, S. Ameratunga, and N. S. Stott, “Enabling self-directed computer use for individuals with cerebral palsy: a systematic review of assistive devices and technologies,” Dev. Med. Child Neurol., vol. 52, no. 6, pp. 510–516, Jun. 2010. [11] D. W. K. Man and M. S. L. Wong, “Evaluation of Computer-Access Solutions for Students With Quadriplegic Athetoid Cerebral Palsy,” Am. J. Occup. Ther., vol. 61, no. 3, pp. 355–364, May 2007. [12] C. Kouroupetroglou, Enhancing the Human IMU-Mouse: diseño e implementación de un dispositivo apuntador dirigido al desarrollo de interfaces adaptativas para personas con discapacidad física TecnoLógicas, Vol. 21, No. 41, enero-abril de 2018, pp. 63-79 Experience through Assistive Technologies and E-Accessibility, Hershey, PA: IGI Global, 2014. [13] L. C. Barrera, H. Loaiza, and S. E. Nope, “Comando de un cursor en 2-D mediante señales EEG,” Entre Cienc. e Ing., no. 15, pp. 24–31, 2014. [14] X. Huo, H. Park, J. Kim, and M. Ghovanloo, “A Dual-Mode Human Computer Interface Combining Speech and Tongue Motion for People with Severe Disabilities,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 21, no. 6, pp. 979–991, 2013. [15] C. A. Castillo Benavides, L. F. García, N. D. Duque Méndez, and J. H. Estrada Estrada, “Mouse para personas con discapacidad física en contextos educativos,” Rev. Ing. e Innovación, vol. 3, no. 1, pp. 82–89, 2015. [16] Y. wook Kim and J. hyun Cho, “A novel development of head-set type computer mouse using gyro sensors for the handicapped,” in 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology., 2002, pp. 356–359. [17] N. Nakazawa, K. Yamada, T. Matsui, and I. Itoh, “Development of welfare supportequipment for personal computer operation with head tilting and breathing,” in 31st Annual Conference of IEEE Industrial Electronics Society, 2005. IECON 2005., 2005, pp. 201–206. [18] C. Gerdtman and M. Lindén, “Development of a gyro sensor based computer mouse with usb interface as technical aid for disabled persons,” in 3rd European Medical & Biological Engineering Conference, 2005, pp. 1–5. [19] M. Bureau, J. M. Azkoitia, G. Ezmendi, I. Manterola, H. Zabaleta, M. Perez, and J. Medina, “Non-Invasive, Wireless and Universal Interface for the Control of Peripheral Devices by Means of Head Movements,” in 10th International Conference on Rehabilitation Robotics, 2007, pp. 124–131. [20] T. Simpson, C. Broughton, M. J. A. Gauthier, and A. Prochazka, “Tooth-click control of a hands-free computer interface.,” IEEE Trans. Biomed. Eng., vol. 55, no. 8, pp. 2050– 6, Aug. 2008. [21] R. Raya, J. O. Roa, E. Rocon, R. Ceres, and J. L. Pons, “Wearable inertial mouse for children with physical and cognitive impairments,” Sensors Actuators A Phys., vol. 162, no. 2, pp. 248–259, Aug. 2010. [22] S. Kim, M. Park, S. Anumas, and J. Yoo, “Head mouse system based on gyro and opto sensors,” in 3rd International Conference on Biomedical Engineering and Informatics, 2010, pp. 1503–1506. [23] N. Sim, C. Gavriel, W. W. Abbott, and A. A. Faisal, “The Head Mouse - Head Gaze Estimation ‘In-the-Wild’ with Low-Cost Inertial Sensors for BMI Use,” in 6th International IEEE/EMBS Conference on Neural Engineering (NER), 2013, pp. 735– 738. [24] W. H. Baird, “An introduction to inertial navigation,” Am. J. Phys., vol. 77, no. 9, pp. 844–847, Sep. 2009. [25] N. Yazdi, F. Ayazi, and K. Najafi, “Micromachined inertial sensors,” Proc. IEEE, vol. 86, no. 8, pp. 1640–1659, 1998. [26] S. Reif Acherman, “Juguetes como Instrumentos de Enseñanza en Ingeniería: Los casos del Péndulo de Newton y el Giroscopio,” Ing. y Compet., vol. 16, no. 2, pp. 189–198, 2014. [27] Y. S. Ryu, D. H. Koh, D. Ryu, and D. Um, “Usability Evaluation of Touchless Mouse Based on Infrared Proximity Sensing,” J. Usability Stud., vol. 7, no. 1, pp. 31–39, 2011. [28] X. Zhang and I. S. MacKenzie, “Evaluating Eye Tracking with ISO 9241 - Part 9,” in Human-Computer Interaction. HCI Intelligent Multimodal Interaction Environments, J. A. Jacko, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 779–788. [29] International Organization for Standardization, “Ergonomic requirements for office work with visual display terminals (vdts) - part 9: requirements for nonkeyboard input devices,” ISO 92419:2000(en), 2012. [30] R. Likert, “A technique for the measurement of attitudes,” Arch. Psichol., vol. 22, no. 140, pp. 5–55, 1932. [31] J. W. Tukey, Exploratory data analysis. Pearson, 1977.
dc.rightshttps://creativecommons.org/licenses/by/3.0/deed.es_ESen-US
dc.sourceTecnoLógicas; Vol. 21 No. 41 (2018); 63-79en-US
dc.sourceTecnoLógicas; Vol. 21 Núm. 41 (2018); 63-79es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectAccessibilityen-US
dc.subjectphysical disabilityen-US
dc.subjectadaptive interfacesen-US
dc.subjectmouseen-US
dc.subjectinertial measurement uniten-US
dc.subjectAccesibilidades-ES
dc.subjectdiscapacidad físicaes-ES
dc.subjectinterfaces adaptativases-ES
dc.subjectmousees-ES
dc.subjectunidad de medida inercial.es-ES
dc.titleIMU-Mouse: design and implementation of a pointing device for people with disabilitiesen-US
dc.titleIMU-Mouse: diseño e implementación de un dispositivo apuntador dirigido al desarrollo de interfaces adaptativas para personas con discapacidad físicaes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem