Mostrar el registro sencillo del ítem
Automatic classification of vowels in Colombian sign language
Clasificación automática de las vocales en el lenguaje de señas colombiano
dc.creator | Botina-Monsalve, Deivid J. | |
dc.creator | Domínguez-Vásquez, María A. | |
dc.creator | Madrigal-González, Carlos A. | |
dc.creator | Castro-Ospina, Andrés E. | |
dc.date | 2018-01-15 | |
dc.date.accessioned | 2021-03-18T21:06:52Z | |
dc.date.available | 2021-03-18T21:06:52Z | |
dc.identifier | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/730 | |
dc.identifier | 10.22430/22565337.730 | |
dc.identifier.uri | http://test.repositoriodigital.com:8080/handle/123456789/11718 | |
dc.description | Sign language recognition is a highly-complex problem due to the amount of static and dynamic gestures needed to represent such language, especially when it changes from country to country. This article focuses on static recognition of vowels in Colombian Sign Language. A total of 151 images were acquired for each class, and an additional non-vowel class with different scenes was also considered. The object of interest was cut out of the rest of the scene in the captured image by using color information. Subsequently, features were extracted to describe the gesture that corresponds to a vowel or to the class that does not match any vowel. Next, four sets of features were selected. The first one contained all of them; from it, three new sets were generated. The second one was extracted from a subset of features given by the Principal Component Analysis (PCA) algorithm. The third set was obtained by Sequential Feature Selection (SFS) with the FISHER measure. The last set was completed with SFS based on the performance of the K-Nearest Neighbor (KNN) algorithm. Finally, multiple classifiers were tested on each set by cross-validation. Most of the classifiers achieved a performance over 90%, which led to conclude that the proposed method allows an appropriate class distinction. | en-US |
dc.description | El reconocimiento del lenguaje de señas es un problema de alta complejidad, debido a la cantidad de gestos estáticos y dinámicos necesarios para representar dicho lenguaje, teniendo en cuenta que el mismo variará para cada país en particular. Este artículo se enfoca en el reconocimiento de las vocales del lenguaje colombiano de señas, de forma estática. Se adquirieron 151 imágenes por cada clase, teniendo en cuenta también una clase no vocal adicional con diferentes escenas. A partir de cada imagen capturada se separa el objeto de interés del resto de la escena usando información de color; luego, se extraen características para describir el gesto correspondiente a cada vocal o a la clase que no corresponde a ninguna vocal. Posteriormente, se seleccionan cuatro conjuntos de características. El primero con la totalidad de ellas; a partir de este salen tres nuevos conjuntos: el segundo extrayendo un subconjunto de características mediante el algoritmo de Análisis de Componentes Principales (PCA). El tercer conjunto, aplicando Selección Secuencial hacia Adelante (SFS), mediante la medida de FISHER y el último conjunto con SFS basado en el desempeño del clasificador de los vecinos más cercanos (KNN). Finalmente se prueban múltiples clasificadores para cada conjunto por medio de validación cruzada, obteniendo un desempeño superior al 90% para la mayoría de los clasificadores, concluyendo que la metodología propuesta permite una adecuada separación de las clases. | es-ES |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Instituto Tecnológico Metropolitano (ITM) | en-US |
dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/730/705 | |
dc.relation | /*ref*/I. Instituto Nacional para Sordos, “Estadística Básica Población Sorda Colombiana,” 2015. [Online]. Available: http://www.insor.gov.co/observatorio/estadist icas-basicas-poblacion-sorda-colombiana/. [Accessed: 01-Sep-2017]. [2] I. Instituto Nacional para Sordos, “Diccionario básico de la lengua de señas colombiana,” 2006. [Online]. Available: http://www.ucn.edu.co/ediscapacidad/Documents/36317784Diccionario-lengua-de-senas.pdf. [Accessed: 27-Nov-2017]. [3] A. V. W. Smith, A. I. Sutherland, A. Lemoine, and S. Mcgrath, “Hand gesture recognition system and method,” 6,128,003, 2000. [4] Y. Fang, K. Wang, J. Cheng, and H. Lu, “A Real-Time Hand Gesture Recognition Method,” in Multimedia and Expo, 2007 IEEE International Conference on, 2007, pp. 995–998. [5] P. Premaratne, S. Yang, Z. Zhou, and N. Bandara, “Dynamic Hand Gesture Recognition Framework,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8589 LNAI, 2014, pp. 834–845. [6] M. Hrúz, J. Trojanová, and M. Železný, “Local Binary Pattern based features for sign language recognition,” Pattern Recognit. Image Anal., vol. 22, no. 4, pp. 519–526, Dec. 2012. [7] Jie Huang, Wengang Zhou, Houqiang Li, and Weiping Li, “Sign Language Recognition using 3D convolutional neural networks,” in 2015 IEEE International Conference on Multimedia and Expo (ICME), 2015, pp. 1–6. [8] L. Pigou, S. Dieleman, P.-J. Kindermans, and B. Schrauwen, “Sign Language Recognition Using Convolutional Neural Networks,” in Workshop at the European Conference on Computer Vision, 2015, pp. 572–578. [9] G. Anantha Rao, P. V. V Kishore, A. S. C. S. Sastry, D. Anil Kumar, and E. Kiran Kumar, “Selfie Continuous Sign Language Recognition with Neural Network Classifier,” in Lecture Notes in Electrical Engineering, vol. 434, 2018, pp. 31–40. [10] X. Chai, G. Li, Y. Lin, Z. Xu, Y. Tang, and X. Chen, “Sign Language Recognition and Translation with Kinect,” 10th IEEE Int. Conf. Autom. Face Gesture Recognit., pp. 22– 26, 2013. [11] K. M. Lim, A. W. C. Tan, and S. C. Tan, “A feature covariance matrix with serial particle filter for isolated sign language recognition,” Expert Syst. Appl., vol. 54, pp. 208–218, Jul. 2016. [12] H. Cooper, B. Holt, and R. Bowden, “Sign Language Recognition,” in Visual Analysis of Humans, no. 231135, London: Springer London, 2011, pp. 539–562. [13] Eng-Jon Ong, H. Cooper, N. Pugeault, and R. Bowden, “Sign Language Recognition using Sequential Pattern Trees,” in 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 2200–2207. [14] A. Agarwal and M. K. Thakur, “Sign language recognition using Microsoft Kinect,” in 2013 Sixth International Conference on Contemporary Computing (IC3), 2013, pp. 181–185. [15] M. Mohandes, S. Aliyu, and M. Deriche, “Arabic sign language recognition using the leap motion controller,” in 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), 2014, pp. 960–965. [16] J. F. Lichtenauer, E. A. Hendriks, and M. J. T. Reinders, “Sign language recognition by combining statistical DTW and independent classification,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 11, pp. 2040–2046, 2008 [17] S. Dudoit, J. Fridlyand, and T. P. Speed, “Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data,” J. Am. Stat. Assoc., vol. 97, no. 457, pp. 77–87, Mar. 2002. [18] M. Kumari and S. Godara, “Comparative Study of Data Mining Classification Methods in Cardiovascular Disease Prediction,” Int. J. Comput. Sci. Trends Technol., vol. 2, no. 2, pp. 304–308, 2011. [19] M. Janidarmian, K. Radecka, and Z. Zilic, “Automated diagnosis of knee pathology using sensory data,” in Proceedings of the 2014 4th International Conference on Wireless Mobile Communication and Healthcare - “Transforming Healthcare Through Innovations in Mobile and Wireless Technologies”, MOBIHEALTH 2014, 2015, pp. 95–98. [20] J. Pradeep, E. Srinivasan, and S. Himavathi, “Diagonal Based Feature Extraction for Handwritten Alphabets Recognition System Using Neural Network,” Int. J. Comput. Sci. Inf. Technol., vol. 3, no. 1, pp. 27–38, Feb. 2011 [21] C. Goodall and I. T. Jolliffe, “Principal Component Analysis,” Technometrics, vol. 30, no. 3, p. 351, Aug. 1988. [22] B. Al-Mistarehi, “An approach for automated detection and classification of pavement cracks,” 2017. Clasificación automática de las vocales en el lenguaje de señas colombiano [114] TecnoLógicas, Vol. 21, No. 41, enero-abril de 2018, pp. 103-114 [23] D. Liu and J. Yu, “Otsu Method and Kmeans,” in 2009 Ninth International Conference on Hybrid Intelligent Systems, 2009, vol. 1, pp. 344–349. [24] A. K. Jain, P. W. Duin, and Jianchang Mao, “Statistical pattern recognition: a review,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 1, pp. 4–37, 2000. [25] S. Theodoridis, “Machine Learning: A Bayesian and Optimization Perspective,” Mach. Learn. A Bayesian Optim. Perspect., pp. 1–1050, 2015. [26] R. O. Duda, P. E. Hart, and D. G. Stork, “Pattern Classification,” New York John Wiley, Sect., p. 654, 2000. [27] D. Mery, “BALU: A Matlab toolbox for computer vision, pattern recognition and image processing”, http://dmery.ing.puc.cl/ index.php/balu, 2011. | |
dc.rights | https://creativecommons.org/licenses/by/3.0/deed.es_ES | en-US |
dc.source | TecnoLógicas; Vol. 21 No. 41 (2018); 103-114 | en-US |
dc.source | TecnoLógicas; Vol. 21 Núm. 41 (2018); 103-114 | es-ES |
dc.source | 2256-5337 | |
dc.source | 0123-7799 | |
dc.subject | Principal Component Analysis | en-US |
dc.subject | Classification | en-US |
dc.subject | Colombian sign language | en-US |
dc.subject | Feature selection | en-US |
dc.subject | Cross-validation | en-US |
dc.subject | Análisis de componentes principales | es-ES |
dc.subject | clasificación | es-ES |
dc.subject | lenguaje de señas colombiano | es-ES |
dc.subject | selección de características | es-ES |
dc.subject | validación cruzada | es-ES |
dc.title | Automatic classification of vowels in Colombian sign language | en-US |
dc.title | Clasificación automática de las vocales en el lenguaje de señas colombiano | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Research Papers | en-US |
dc.type | Artículos de investigación | es-ES |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
tecnologia [520]