Mostrar el registro sencillo del ítem

Integración de los recursos energéticos distribuidos en microrredes aisladas: paradigma colombiano

dc.creatorLópez-García, Dahiana
dc.creatorArango-Manrique, Adriana
dc.creatorCarvajal-Quintero, Sandra X.
dc.date2018-05-14
dc.date.accessioned2021-03-18T21:06:54Z
dc.date.available2021-03-18T21:06:54Z
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/774
dc.identifier10.22430/22565337.774
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/11727
dc.descriptionThe electrification of rural or isolated areas coupled with increasing environmental concerns have promoted the emergence of Distributed Energy Resources (DER) and the operation by isolated microgrids. However, the integration of such resources involves technical issues related to the reliability and continuity of the electricity supply. Indeed, the uncertainty of renewable generation sources and the reduced inertia of isolated microgrids are challenges for the operation of these distribution systems. One way to address them is by providing ancillary services through all the resources involved in the system’s operation (generation assets, demand share, and storage systems). Accordingly, this paper first presents a literature review of the challenges and potential benefits of integrating DERs into the operation of a distribution system. It also includes some common strategies to mitigate the vulnerability of the introduction of these technologies in microgrids. Afterwards, the current state of each type of resource in Colombia is assessed. Finally, some basic strategies that enhance the benefits of DER integration are outlined along with the overcoming of challenges of microgrid operation in said country. To that end, we consider isolated Colombian regions to be natural laboratories where the effects of DER integration and the requirements for the operation by local production units can be analyzed.en-US
dc.descriptionLa electrificación de áreas rurales o aisladas, junto con las crecientes preocupaciones ambientales, han promovido la aparición de Recursos Energéticos Distribuidos (DER), y la operación por microrredes aisladas. Sin embargo, la integración de dichos recursos trae consigo problemas técnicos relacionados con la confiabilidad y la continuidad del suministro de electricidad. De hecho, la variabilidad e incertidumbre del recurso primario de las fuentes de generación renovables y la poca inercia de las microrredes aisladas son desafíos que se enfrentan en la operación de estos sistemas de distribución. Una forma de responder a estos desafíos es brindando servicios complementarios a través de todos los recursos inmersos en el funcionamiento del sistema (activos de generación, participación de la demanda y sistemas de almacenamiento). Este artículo muestra una revisión de los desafíos y beneficios potenciales de la Integración de DER, en la operación del sistema de distribución reportados en la literatura, junto con algunas estrategias comunes para mitigar la vulnerabilidad de la introducción de estas tecnologías en microrredes. Asimismo, realiza una evaluación del estado actual de cada recurso en Colombia; finalmente, se describen algunas estrategias para aumentar del impacto de los beneficios de la Integración de DER y la superación de algunos desafíos planteados en la operación por microredes en Colombia. Para ello, se considera a las regiones aisladas de Colombia como un laboratorio natural, donde sería posible analizar los efectos de la Integración de DER, así como los requisitos para la operación por parte de las unidades de producción locales.es-ES
dc.formatapplication/pdf
dc.formattext/html
dc.formattext/xml
dc.languageeng
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/774/904
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/774/973
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/774/1197
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/774/1246
dc.relation/*ref*/Q. Wang, C. Zhang, Y. Ding, G. Xydis, J. Wang, and J. Østergaard, “Review of real-time electricity markets for integrating Distributed Energy Resources and Demand Response,” Appl. Energy, vol. 138, pp. 695–706, 2015. [2] C. Eid, P. Codani, Y. Perez, J. Reneses, and R. Hakvoort, “Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design,” Renew. Sustain. Energy Rev., vol. 64, pp. 237–247, 2016. [3] D. Neves, M. C. Brito, and C. A. Silva, “Impact of solar and wind forecast uncertainties on demand response of isolated microgrids,” Renew. Energy, vol. 87, pp. 1003–1015, Mar. 2016. [4] F. Martin-Martínez, A. Sánchez-Miralles, and M. Rivier, “A literature review of Microgrids: A functional layer based classification,” Renew. Sustain. Energy Rev., vol. 62, pp. 1133–1153, 2016. [5] S. M. Nosratabadi, R. Hooshmand, and E. Gholipour, “A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems,” Renew. Sustain. Energy Rev., vol. 67, pp. 341–363, Jan. 2017. [6] F. Adinolfi, G. M. Burt, P. Crolla, F. D. Agostino, M. Saviozzi, and F. Silvestro, “Distributed Energy Resources Management in a Low-Voltage Test Facility,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2593–2603, 2015. [7] P. Faria, Z. Vale, and J. Baptista, “Constrained consumption shifting management in the distributed energy resources scheduling considering demand response,” Energy Convers. Manag., vol. 93, pp. 309–320, Mar. 2015. [8] M. Bayat, K. Sheshyekani, M. Hamzeh, and A. Rezazadeh, “Coordination of Distributed Energy Resources and Demand Response for Voltage and Frequency Support of MV Microgrids,” IEEE Trans. Power Syst., vol. 31, no. 2, pp. 1506–1516, Mar. 2016. [9] L. Montuori, M. Alcázar-Ortega, C. Álvarez-Bel, and A. Domijan, “Integration of renewable energy in microgrids coordinated with demand response resources: Economic evaluation of a biomass gasification plant by Homer Simulator,” Appl. Energy, vol. 132, pp. 15–22, Nov. 2014. [10] T. L. Vandoorn, B. Zwaenepoel, J. D. M. De Kooning, B. Meersman, and L. Vandevelde, “Smart microgrids and virtual power plants in a hierarchical control structure,” in 2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies, 2011, pp. 1–7. [11] S. B. Van Broekhoven, N. Judson, S. V. T. Nguyen, and W. D. Ross, “Microgrid Study : Energy Security for DoD Installations,” 2012. [12] R. Rashed Mohassel, A. Fung, F. Mohammadi, and K. Raahemifar, “A survey on Advanced Metering Infrastructure,” Int. J. Electr. Power Energy Syst., vol. 63, pp. 473–484, 2014. [13] J. Kwac and R. Rajagopal, “Demand response targeting using big data analytics,” in 2013 IEEE International Conference on Big Data, 2013, pp. 683–690. [14] R.-S. Liu, “An Algorithmic Game Approach for Demand Side Management in Smart Grid with Distributed Renewable Power Generation and Storage,” Energies, vol. 9, no. 8, p. 654, Aug. 2016. [15] J. A. Peças Lopes, N. Hatziargyriou, J. Mutale, and N. Jenkins, “Integrating distributed generation into electric power systems: A review of drivers, challenges and opportunities,” Electr. Power Syst. Res., vol. 77, no. 9, pp. 1189–1203, 2007. [16] S.Abu-Sharkh et al., “Can microgrids make a major contribution to UK energy supply?,” Renew. Sustain. Energy Rev., vol. 10, no. 2, pp. 78–127, Apr. 2006. [17] M. Afkousi-Paqaleh, A. Abbaspour-Tehrani Fard, and M. Rashidinejad, “Distributed generation placement for congestion management considering economic and financial issues,” Electr. Eng., vol. 92, no. 6, pp. 193–201, Nov. 2010. [18] J. Schiavo, “Distributed Energy Can Lead to Smarter Grid Planning,” Clean Energy Finance Forum, 2016. [Online]. Available: http://www.cleanenergyfinanceforum.com/2016/07/31/distributed-energy-can-lead-to-smarter-grid-planning. [19] T. Wildi, Electrical Machines, Drives and Power Systems, 6th ed. Columbus, Ohio: Prentice Hall, 2006. [20] M. Behrangrad, “A review of demand side management business models in the electricity market,” Renew. Sustain. Energy Rev., vol. 47, pp. 270–283, Jul. 2015. [21] F. Kreith and D. W. Pepper, Energy fficiency and Renewable Energy Handbook, 2nd ed. CRC Press, 2015. [22] P. Palensky and D. Dietrich, “Demand side management: Demand response, intelligent energy systems, and smart loads,” IEEE Trans. Ind. Informatics, vol. 7, no. 3, pp. 381–388, 2011. [23] Observatorio Industrial del Sector de la Electrónica Tecnologías de la Información y Telecomunicaciones, “Smart Grids y la Evolución de la Red Eléctrica,” 2011. [24] Federal Energy Regulatory Commission - FERC, “Benefits of Demand Response in Electricity Markets and Recommendations for Achieving Them,” 2006. [25] A. Brooks, E. Lu, D. Reicher, C. Spirakis, and B. Weihl, “Demand Dispatch,” IEEE Power Energy Mag., vol. 8, no. 3, pp. 20–29, May 2010. [26] P. Cappers, A. Mills, C. Goldman, R. Wiser, and J. H. Eto, “Mass market demand response and variable generation integration issues: A scoping study,” 2011. [27] S. P. Chowdhury, P. Crossley, and S. Chowdhury, Microgrids and Active Distribution Networks. Institution of Engineering and Technology, 2009. [28] F. P. Sioshansi, Integrating Renewable, Distributed & Efficient Energy. Academic Press, 2011. [29] C. F. Calvillo, A. Sánchez-Miralles, J. Villar, and F. Martín, “Optimal planning and operation of aggregated distributed energy resources with market participation,” Appl. Energy, vol. 182, pp. 340–357, Nov. 2016. [30] N. W. A. Lidula and A. D. Rajapakse, “Microgrids research: A review of experimental microgrids and test systems,” Renew. Sustain. Energy Rev., vol. 15, no. 1, pp. 186–202, 2011. [31] M. R. Narimani, P. J. Nauert, J.-Y. Joo, and M. L. Crow, “Reliability assesment of power system at the presence of demand side management,” in 2016 IEEE Power and Energy Conference at Illinois (PECI), 2016, pp. 1–5. [32] I.-S. Ilie, I. Hernando-Gil, A. J. Collin, J. L. Acosta, and S. Z. Djokic, “Reliability performance assessment in smart grids with demand-side management,” in 2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies, 2011, pp. 1–7. [33] F. Shariatzadeh, P. Mandal, and A. K. Srivastava, “Demand response for sustainable energy systems: A review, application and implementation strategy,” Renew. Sustain. Energy Rev., vol. 45, no. August 2016, pp. 343–350, May 2015. [34] G. Ferruzzi, G. Graditi, F. Rossi, and A. Russo, “Optimal Operation of a Residential Microgrid: The Role of Demand Side Management,” Intell. Ind. Syst., vol. 1, no. 1, pp. 61–82, 2015. [35] V. Van Thong, J. Driesen, and R. Belmans, “Power quality and voltage stability of distribution system with distributed energy resources,” Int. J. Distrib. Energy Resour., vol. 1, no. 3, pp. 227–240, 2005. [36] D. Singh, R. K. Misra, and D. Singh, “Effect of Load Models in Distributed Generation Planning,” IEEE Trans. Power Syst., vol. 22, no. 4, pp. 2204–2212, Nov. 2007. [37] H. Iyer, S. Ray, and R. Ramakumar, “Voltage profile improvement with distributed generation,” in IEEE Power Engineering Society General Meeting, 2005, pp. 1603–1610. [38] A. Arango-Manrique, S. X. Carvajal-Quintero, and S. Arango-Aramburo, “Contribution of Distributed Generation to Voltage Control,” Ing. e Investig., vol. 31, no. 2, pp. 153–158, 2011. [39] M. H. J. Bollen and M. Häger, “Power Quality : Interactions Between Distributed Energy Resources , the Grid , and Other Customers,” Electr. Power Qual. Util. Mag., pp. 51–61, 2005. [40] S. M. H. Nabavi, S. Hajforoosh, and M. A. S. Masoum, “Placement and sizing of distributed generation units for congestion management and improvement of voltage profile using particle swarm optimization,” in 2011 IEEE PES Innovative Smart Grid Technologies, 2011, pp. 1–6. [41] J. M. Carrasco et al., “Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1002–1016, Jun. 2006. [42] F. P. Sioshansi, Future of Utilities Utilities of the Future, 1st ed. Boston: Academic Press, 2016. [43] J. Vasquez, J. Guerrero, J. Miret, M. Castilla, and L. Garcia de Vicuna, “Hierarchical Control of Intelligent Microgrids,” IEEE Ind. Electron. Mag., vol. 4, no. 4, pp. 23–29, 2010. [44] Congreso de Colombia, Ley 855. Colombia, 2003. [45] J. F. Bustos, A. L. Sepúlveda, and L. K. Triviio, “Zonas no interconectadas eléctricamente en Colombia: problemas y perspectiva,” SSRN Electron. J., p. 27, 2014. [46] Instituto de Planificación y Promoción de Soluciones Energéticas para las Zonas No Interconectadas - IPSE, “Soluciones Energéticas para las Zonas No Interconectadas de Colombia,” 2014. [47] Instituto de Planificación y Promoción de Soluciones Energéticas para las Zonas No Interconectadas - IPSE, “Informe telemetría mensual Julio 2016,” 2017. [Online]. Available: https://www.datos.gov.co/Minas-y-Energ-a/Localidades-ZNI-Sin-Telemetr-a-Junio-2017/32n6-8kku. [48] Instituto de Planificación y Promoción de Soluciones Energéticas para las Zonas No Interconectadas - IPSE, “Informe mensual de telemetría - Enero 2018,” 2018. [Online]. Available: http://190.216.196.84/cnm/info_mes.php. [49] Sistema de Gestión de Información y Conocimiento en Fuentes No Convencionales de Energía Renovable en Colombia (SGI&C - FNCER), “Sistemas Fotovoltaicos aislados en el municipio de Paratebueno - Cundinamarca,” 2018. [Online]. Available: http://www.upme.gov.co:81/sgic/?q=content/sistemas-fotovoltaicos-aislados-en-el-municipio-de-paratebueno-cundinamarca. [50] Unidad de Planeación Minero Energética - UPME, “Informe de Proyectos de Generación de Energía Eléctrica,” 2017. [51] Instituto de Planificación y Promoción de Soluciones Energéticas para las Zonas No Interconectadas - IPSE, “El IPSE no recibirá las obras del proyecto de generación de energía eólica ‘Nazareth’ en la Alta Guajira.,” 2012. [Online]. Available: http://www.ipse.gov.co/ipse/comunicaciones-ipse/noticias-ipse/459-el-ipse-no-recibira-las-obras-del-proyecto-de-generacion-de-energia-eolica-nazareth-en-la-alta-guajira. [52] Ministerio de Minas y Energía, Decreto 1591. Colombia, 2004. [53] Comisión de Regulación de Energía y Gas - CREG, Resolución 091. Colombia, 2007. [54] Unidad de planeación Minero Energetíca - UPME, “Plan Indicativo de Expansión de Cobertura de Energía Eléctrica, PIEC 2016-2020,” 2016. [55] Expertos en Mercados - XM, “Informe Seguimiento Cogeneradores - Julio 2016,” 2016. [56] A. L. Michelsen, Resolución 128. Colombia, 1996. [57] J. H. Flórez Acosta, D. Tobón orozco, and G. A. Castillo Quintero, “¿Ha Sido Efectiva La Promocion De Soluciones Energeticas En Las Zonas No Interconectadas (ZNI) En Colombia?: Un Análisis De La Estructura Institucional,” Cuad. Adm., vol. 22, no. 38, pp. 219–245, 2009. [58] Unidad de Planeación Minero Energética - UPME, Ministerio de Minas y Energía, and Subdirección de Demanda, “Proyección regional de demanda de energía eléctrica y potencia máxima en Colombia,” 2016. [59] Expertos en Mercados - XM, “Operación del SIN y Administración del Mercado,” 2016. [60] S. X. Carvajal, J. Serrano, and S. Arango, “Colombian ancillary services and international connections: Current weaknesses and policy challenges,” Energy Policy, vol. 52, pp. 770–778, Jan. 2013. [61] Comisión de Regulación de Energía y Gas - CREG, Resolución 071. Colombia, 2006. [62] Congreso de Colombia, Ley 1715. Colombia, 2014. [63] Comisión de Regulación de Energía y Gas - CREG, Resolución 030. 2018. [64] Comisión de Regulación de Energía y Gas - CREG, Resolución 011. Colombia, 2015. [65] Comisión de Regulación de Energía y Gas - CREG, Resolución 042. Colombia, 2016. [66] Comisión de Regulación de Energía y Gas - CREG, Resolución 025. Colombia, 1995. [67] Ministerio de Minas y Energía, Decreto 2492. Colombia, 2014. [68] Congreso de Colombia, Ley 697. Colombia, 2001. [69] Instituto de Planificación y Promoción de Soluciones Energéticas para las Zonas No Interconectadas - IPSE, “Centinelas de la Energía,” 2013. [Online]. Available: http://www.ipse.gov.co/ipse/proyectos-ipse/uso-racional-de-la-energia. [70] Unidad de Planeación Minero Energética - UPME, “Estudio: Smart Grids Colombia Visión 2030 - Mapa de ruta para la implementación de redes inteligentes en Colombia,” 2016. [Online]. Available: http://www1.upme.gov.co/Paginas/Smart-Grids-Colombia-Visión-2030.aspx. [71] N. Hatziargyriou, Microgrids: Architectures and Control. Chichester, United Kingdom: John Wiley and Sons Ltd, 2013. [72] “Microgrids at Berkeley Lab,” 2018. [Online]. Available: https://building-microgrid.lbl.gov/huatacondo. [Accessed: 30-Jan-2018]. [73] O. Núñez Mata, D. Ortiz Villalba, and R. Palma-Behnke, “Microrredes en la red eléctrica del futuro - Caso Huatacondo.,” Cienc. y Tecnol., vol. 29, no. 2, pp. 1–16, 2013. [74] Intergovernmental Panel on Climate Change, Climate Change 2013 - The Physical Science Basis. Cambridge: Cambridge University Press, 2014. [75] L. S. Xavier, J. H. de Oliveira, A. F. Cupertino, V. F. Mendes, and H. A. Pereira, “Saturation scheme for single-phase photovoltaic inverters in multifunctional operation,” in 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE), 2015, vol. 2015–Septe, no. September, pp. 1392–1397. [76] M. Wiemann, S. Rolland, and G. Glania, Hybrid Mini-Grids for Rural Electrification: Lessons Learned. Alliance for Rural Electrification, 2011. [77] S. X. Carvajal Quintero, “Análisis de Servicios Complementarios en Sistemas de Potencia Eléctricos en Ambientes de Mercados,” Universidad Nacional de Colombia, 2013. [78] International Energy Agency - IEA, “Energy for All: Financing access for the poor,” in World Energy Outlook 2011, 2011, p. 52. [79] S. C. Bhattacharyya, “Energy access programmes and sustainable development: A critical review and analysis,” Energy Sustain. Dev., vol. 16, no. 3, pp. 260–271, Sep. 2012. [80] IEEE Standards Association, IEEE 1547.4 Guide for Design , Operation , and Integration of Distributed Resource Island Systems with Electric Power Systems. Institute of Electrical and Electronics Engineers, Incorporated., 2011. [81] A. Mehrizi-Sani and R. Iravani, “Potential-Function Based Control of a Microgrid in Islanded and Grid-Connected Modes,” IEEE Trans. Power Syst., vol. 25, no. 4, pp. 1883–1891, Nov. 2010. [82] K. P. Detroja, “Optimal autonomous microgrid operation: A holistic view,” Appl. Energy, vol. 173, pp. 320–330, Jul. 2016. [83] A. Gomez-Exposito, A. J. Conejo, and C. Canizares, Electric Energy Systems Analysis and Operation. CRC Press, 2008. [84] J. Riesz and I. Macgill, “Frequency Control Ancillary Services. Is Australia a Model Market for Renewable Integration?,” CiteSeer, p. 6, 2013.
dc.rightshttps://creativecommons.org/licenses/by/3.0/deed.es_ESen-US
dc.sourceTecnoLógicas; Vol. 21 No. 42 (2018); 13-30en-US
dc.sourceTecnoLógicas; Vol. 21 Núm. 42 (2018); 13-30es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectAncillary Servicesen-US
dc.subjectDistributed Energy Resourceen-US
dc.subjectIsolated Gridsen-US
dc.subjectMicrogridsen-US
dc.subjectTechnical Sustainabilityen-US
dc.subjectServicios complementarioses-ES
dc.subjectRecursos Energéticos Distribuidoses-ES
dc.subjectRedes Aisladases-ES
dc.subjectMicrorredeses-ES
dc.subjectSostenibilidad técnicaes-ES
dc.titleIntegration of distributed energy resources in isolated microgrids: the Colombian paradigmen-US
dc.titleIntegración de los recursos energéticos distribuidos en microrredes aisladas: paradigma colombianoes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeReflection articles 2en-US
dc.typeArtículos de reflexión 2es-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem