Mostrar el registro sencillo del ítem

Cargador de baterías fotovoltaico con control por modos deslizantes y limitación de la derivada de corriente de carga

dc.creatorRamos-Paja, Carlos A.
dc.creatorSaavedra-Montes, Andrés J.
dc.creatorBastidas-Rodríguez, Juan D.
dc.date2018-05-14
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/784
dc.identifier10.22430/22565337.784
dc.descriptionIn stand-alone photovoltaic (PV) systems, battery chargers are important to guarantee the energy supply when sunlight is not available. Such chargers need to track the maximum power point (MPPT) and limit the derivative of the batteries’ charging current to extend their lifetime. This paper proposes a battery charging system composed of a Buck converter, a cascade control of the battery current and the PV panel voltage, and the Perturb and Observe (P&O) MPPT technique. P&O generates the reference of the panel voltage for the external loop of the cascade control implemented with a P regulator, whose control action is the reference of the batteries’ charging current. Such current reference passes through a derivative limiter before reaching the internal current control loop, which is implemented by a sliding-mode controller (SMC). This paper includes transversality and reachability analyses of the SMC, as well as the procedure to design the P regulator. The proposed system is validated by simulations in PSIM software to show its capacity to perform MPPT and limit the battery’s charging current derivative at the same time.en-US
dc.descriptionEn los sistemas fotovoltaicos (PV) aislados, los cargadores de baterías son importantes para garantizar el suministro de energía cuando la luz solar no está disponible. Dichos cargadores necesitan realizar el seguimiento del punto de máxima potencia (MPPT) y limitar la derivada de corriente de carga de las baterías para extender su vida útil. Este artículo propone un sistema cargador de baterías compuesto por un convertidor Buck, un control en cascada de la corriente de las baterías y la tensión del panel PV, y la técnica de MPPT Perturbar y Observar (P&O). El P&O genera la referencia de tensión del panel para el lazo externo del control en cascada, implementado con un regulador P, cuya acción de control es la referencia de la corriente de carga de las baterías. Dicha referencia de corriente pasa por un limitador de derivada antes de llegar al lazo interno de control de corriente de las baterías, el cual es implementado con un control por modos deslizantes (SMC). El artículo incluye el análisis de transversalidad y alcanzabilidad del SMC, así como el procedimiento de diseño del regulador P. El sistema propuesto se valida por medio de simulaciones en el software PSIM mostrando la capacidad de realizar el MPPT y limitar la derivada de corriente de carga de las baterías al mismo tiempo.es-ES
dc.formatapplication/pdf
dc.formattext/html
dc.formattext/xml
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/784/913
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/784/984
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/784/1205
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/784/1252
dc.relation/*ref*/REN21, “Advancing the global renewable energy transition,” 2017. [2] IEA-PVPS, “2016 Snapshot of Global Photovoltaic Markets,” 2017. [3] IDEAM, “Atlas de radiación solar, ultravioleta y ozono de Colombia,” Atlas, 2014. [Online]. Available: http://atlas.ideam.gov.co/visorAtlasRadiacion .html. [4] World Bank Group, “Global Solar Atlas,” 2016. [Online]. Available: https://olc.worldbank.org/content/globalsolar- atlas. [5] F. Palmiro, R. Rayudu, and R. Ford, “Modelling and simulation of a solar PV lithium ion battery charger for energy kiosks application,” in 2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), 2015, vol. 3, pp. 1–5. [6] R. A. Messenger and J. Ventre, Photovoltaics Systems Engineering, Second. Boca Raton, London, New York, Washigton D.C.: Taylor & Francis, 2004. [7] Y. E. Abu Eldahab, N. H. Saad, and A. Zekry, “Enhancing the design of battery charging controllers for photovoltaic systems,” Renew. Sustain. Energy Rev., vol. 58, pp. 646–655, May 2016. [8] J. López, S. I. Seleme, P. F. Donoso, L. M. F. Morais, P. C. Cortizo, and M. A. Severo, “Digital control strategy for a buck converter operating as a battery charger for standalone photovoltaic systems,” Sol. Energy, vol. 140, pp. 171–187, Dec. 2016. [9] A. M. Gee, F. V. P. Robinson, and R. W. Dunn, “Analysis of Battery Lifetime Extension in a Small-Scale Wind-Energy System Using Supercapacitors,” IEEE Trans. Energy Convers., vol. 28, no. 1, pp. 24–33, Mar. 2013. [10] J. Li, A. M. Gee, M. Zhang, and W. Yuan, “Analysis of battery lifetime extension in a SMES-battery hybrid energy storage system using a novel battery lifetime model,” Energy, vol. 86, pp. 175–185, Jun. 2015. [11] G. Ning, B. Haran, and B. N. Popov, “Capacity fade study of lithium-ion batteries cycled at high discharge rates,” J. Power Sources, vol. 117, no. 1–2, pp. 160–169, May 2003. [12] J. Li, R. Xiong, Q. Yang, F. Liang, M. Zhang, and W. Yuan, “Design/test of a hybrid energy storage system for primary frequency control using a dynamic droop method in an isolated microgrid power system,” Appl. Energy, vol. 201, pp. 257–269, Sep. 2017. [13] J. Li, Q. Yang, F. Robinson, F. Liang, M. Zhang, and W. Yuan, “Design and test of a new droop control algorithm for a SMES/battery hybrid energy storage system,” Energy, vol. 118, pp. 1110–1122, Jan. 2017. [14] Sony Energy Devices Corporation and Device Solutions Business Group, “Lithium Ion Rechargeable Battery Technical Information,” 2012. [15] E. A. Jiménez-Brea, E. I. Ortiz-Rivera, A. Salazar-Llinás, and J. González-Llorente, “Simple photovoltaic solar cell dynamic sliding mode controlled maximum power point tracker for battery charging applications,” in Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2010, pp. 666–671. [16] A. M. S. S. Andrade, E. Mattos, C. O. Gamba, L. Schuch, and M. L. da S. Martins, “Design and implementation of PV power zeta converters for battery charger applications,” in 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 2015, pp. 3135– 3142. [17] A. M. S. S. Andrade, L. Schuch, and M. L. da S. Martins, “Photovoltaic battery charger based on the Zeta converter: Analysis, design and experimental results,” in 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE), 2015, pp. 379–384. [18] A. M. S. S. Andrade, R. C. Beltrame, L. Schuch, and M. L. da S. Martins, “PV module-integrated single-switch DC/DC converter for PV energy harvest with battery charge capability,” in 2014 11th IEEE/IAS International Conference on Industry Applications, 2014, vol. 1, pp. 1–8. [19] D. G. Montoya, C. A. Ramos-Paja, and R. Giral, “Improved Design of Sliding-Mode Controllers Based on the Requirements of MPPT Techniques,” IEEE Trans. Power Electron., vol. 31, no. 1, pp. 235–247, Jan. 2016. [20] D. González-Montoya, C. A. Ramos-Paja, and R. Giral, “Maximum power point tracking of photovoltaic systems based on the sliding mode control of the module admittance,” Electr. Power Syst. Res., vol. 136, pp. 125– 134, Jul. 2016. [21] R. Haroun, A. El Aroudi, A. Cid-Pastor, G. Garica, C. Olalla, and L. Martinez-Salamero, “Impedance Matching in Photovoltaic Systems Using Cascaded Boost Converters and Sliding-Mode Control,” IEEE Trans. Power Electron., vol. 30, no. 6, pp. 3185– 3199, Jun. 2015. [22] A. Cid-Pastor, L. Martínez-Salamero, A. El Aroudi, R. Giral, J. Calvente, and R. Leyva, “Synthesis of loss-free resistors based on sliding-mode control and its applications in power processing,” Control Eng. Pract., vol. 21, no. 5, pp. 689–699, May 2013. [23] J. Guacaneme, D. González, and C. Trujillo, “Controlador difuso inteligente para un cargador de baterías de plomo-ácido,” Ingeniería, vol. 8, no. 2, pp. 62–67, 2003. [24] SMA, “Technical Information Battery Management of the Sunny Island,” 2017. [25] O. López-Santos, D. A. Zambrano Prada, Y. A. Aldana-Rodríguez, H. A. Esquivel-Cabeza, G. García, and L. Martínez-Salamero, “Control of a Bidirectional Cûk Converter Providing Charge/Discharge of a Battery Array Integrated in DC Buses of Microgrids,” in Applied Computer Sciences in Engineering, J. C. Figueroa-García, E. R. López-Santana, J. L. Villa-Ramírez, and R. Ferro-Escobar, Eds. Cham: Springer International Publishing, 2017, pp. 495–507. [26] M. E. Sahin, H. I. Okumus, and H. Kahveci, “Sliding mode control of PV powered DC/DC Buck-Boost converter with digital signal processor,” in 2015 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe), 2015, pp. 1–8. [27] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of Perturb and Observe Maximum Power Point Tracking Method,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963–973, Jul. 2005. [28] G. Petrone and C. A. Ramos-Paja, “Modeling of photovoltaic fields in mismatched conditions for energy yield evaluations,” Electr. Power Syst. Res., vol. 81, no. 4, pp. 1003–1013, Apr. 2011. [29] Y.-C. Chuang and Y.-L. Ke, “Analysis and implementation of zero voltage switching integrated buck-flyback converter,” IET Power Electron., vol. 6, no. 7, pp. 2846–2852, 2011. [30] Siew-Chong Tan, Y. M. Lai, and C. K. Tse, “General Design Issues of Sliding-Mode Controllers in DC–DC Converters,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1160–1174, Mar. 2008. [31] H. Sira-Ramírez, “Sliding Motions in Bilinear Switched Networks,” IEEE Trans. Circuits Syst., vol. 34, no. 8, pp. 919–933, 1987. [32] P. A. Ortiz-Valencia and C. A. Ramos-Paja, “Sliding-mode controller for maximum power point tracking in grid-connected photovoltaic systems,” Energies, vol. 8, no. 11, pp. 12363– 12387, 2015. [33] C. A. Ramos-Paja, D. González, and A. J. Saavedra-Montes, “Accurate calculation of settling time in second order systems: A photovoltaic application,” Rev. Fac. Ing. Univ. Antioquia, no. 66, pp. 104–117, 2013. [34] T. Green, “TI Precision Designs: Reference Design - Single Op-Amp Slew Rate Limiter,” Texas Instruments Incorporated, 2013. [35] Digatron, “Universal Battery Tester ME Series,” Digatron. [Online]. Available: http://www.digatron.com/zh/automotivebattery/ universal-battery-tester/. [36] Bitrode, “MCV-EV/HEV Battery Cell Testter,” 2015. [Online]. Available: http://www.bitrode.com/model-mcv/.
dc.rightshttps://creativecommons.org/licenses/by/3.0/deed.es_ESen-US
dc.sourceTecnoLógicas; Vol. 21 No. 42 (2018); 129-145en-US
dc.sourceTecnoLógicas; Vol. 21 Núm. 42 (2018); 129-145es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectBattery chargeren-US
dc.subjectphotovoltaic panelen-US
dc.subjectBuck converteren-US
dc.subjectsliding-mode controlen-US
dc.subjectcurrent derivative limitationen-US
dc.subjectCargador bateríases-ES
dc.subjectpanel fotovoltaicoes-ES
dc.subjectconvertidor Buckes-ES
dc.subjectcontrol por modos deslizanteses-ES
dc.subjectlimitación derivada de corrientees-ES
dc.titlePhotovoltaic battery charger with sliding mode control and charging current derivative limitationen-US
dc.titleCargador de baterías fotovoltaico con control por modos deslizantes y limitación de la derivada de corriente de cargaes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem