Mostrar el registro sencillo del ítem

Implementación del modelo TRIGRS con análisis de confiabilidad para la evaluación de la amenaza a movimientos en masa superficiales detonados por lluvia

dc.creatorGarcía-Aristizábal, Edwin Fabián
dc.creatorAristizábal Giraldo, Edier Vicente
dc.creatorMarín Sánchez, Roberto José
dc.creatorGuzmán Martínez, Juan Carlos
dc.date2019-01-15
dc.date.accessioned2021-03-18T21:06:58Z
dc.date.available2021-03-18T21:06:58Z
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1037
dc.identifier10.22430/22565337.1037
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/11742
dc.descriptionLandslides triggered by rainfall infiltration are common in tropical regions. Slope failures represent one of the most common causes of human and economic losses around the world. This study presents a methodology for hazard assessment of shallow landslides triggered by rainfall. The implemented methodology uses the physical based model - TRIGRS (Transient Rainfall Infiltration and Gridbased Slope-Stability), as well as a reliability analysis using the FOSM probabilistic method (First Order Second Moment), which allow to incorporate the uncertainty of strength parameters of the soil (cohesion and friction) and the thickness of the failure surface, these soil properties present great variability associated with the geological and geomorphological conditions for each zone. Additionally, the used methodology allows an adequate analysis of the effect of the rainfall infiltration process on the soil instability since it considers both, the rainfall characteristics (intensity-duration), as well as the hydraulic conductivity and the strength parameters of the soil. The contrast of the results obtained by the FOSM compared to the deterministic results, highlights the importance of considering the uncertainty within the stability analysis. The procedure and obtained results intend to show a useful tool for land use plans, that allows a progressive and sustainable socio-economic development of the areas which can be susceptible to landslides triggered by rainfall infiltration.en-US
dc.descriptionLos deslizamientos detonados por la infiltración de las lluvias son comunes en las regiones tropicales. La falla de taludes representa una de las causas más comunes de pérdidas humanas y económicas en todo el mundo. El presente trabajo presenta una metodología para la evaluación de la amenaza a deslizamientos superficiales detonados por lluvia. La metodología implementada utiliza el modelo de base física - TRIGRS (Transient Rainfall Infiltration and Gridbased Slope-Stability), así como un análisis de confiabilidad a través del método probabilístico FOSM (First Order Second Moment), permitiendo incorporar la incertidumbre sobre los parámetros de resistencia del suelo (cohesión y fricción) y el espesor de la superficie de falla. Estos parámetros presentan gran variabilidad asociada a las condiciones geológicas y geomorfológicas de cada zona en particular. Adicionalmente, la metodología utilizada permite un análisis adecuado del efecto del proceso de infiltración de la lluvia en la inestabilidad de los suelos, ya que considera tanto las características de la lluvia (intensidad-duración), como la permeabilidad y los parámetros de resistencia del suelo. El contraste de los resultados obtenidos utilizando FOSM en relación con los resultados determinísticos, resalta la importancia de considerar la incertidumbre dentro del análisis de estabilidad. El procedimiento presentado y los resultados obtenidos pretenden mostrar una herramienta útil para la ordenación y planificación del territorio que permita una mirada progresiva y sostenible en el desarrollo socio-económico de las zonas susceptibles a deslizamientos detonados por lluvia.es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.formattext/html
dc.languagespa
dc.languageeng
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1037/1175
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1037/1229
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1037/1413
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1037/1878
dc.relation/*ref*/R. L. Baum et al., “Regional landslide-hazard assessment for Seattle, Washington, USA,” Landslides, vol. 2, no. 4, pp. 266–279, Dec. 2005. [2] R. C. Sidle and H. Ochiai, Landslides: Processes, Prediction, and Land Use. American Geophysical Union, 2006. [3] E. Aritstizábal and H. Martínez, “Una revisión sobre el estudio de movimientos en masa detonados por lluvias,” Rev. la Acad. Colomb. Ciencias Exactas, Fis. y Nat., vol. 34, no. 131, pp. 209–227, 2010. [4] R. L. Schuster and R. W. Leighton. “Socioeconomic significance of landslides and mudflows,” In: Kozlovskii, E.A. Ed. Landslides and mudflows, Moscow: UNESCO/UNEP, 1988, pp.131-141. [5] E. Aristizábal and J. Gómez, “Inventario de emergencias y desastres en el valle de Aburrá,” Gestión y Ambient., vol. 10, no. 2, pp. 17–30, 2007. [6] G. E. Á. Álvarez et al., “Guía metodológica para estudios de amenaza, vulnerabilidad y riesgo por movimientos en masa,” Servicio Geológico Colombiano-SGC, 2015. [7] J. Chacón, C. Irigaray, T. Fernández, and R. El Hamdouni, “Engineering geology maps: landslides and geographical information systems,” Bull. Eng. Geol. Environ., vol. 65, no. 4, pp. 341–411, 2006. [8] M. Mergili, I. Marchesini, M. Rossi, F. Guzzetti, and W. Fellin, “Spatially distributed three-dimensional slope stability modelling in a raster GIS,” Geomorphology, vol. 206, pp. 178–195, Feb. 2014. [9] C. J. van Westen, T. W. J. van Asch, and R. Soeters, “Landslide hazard and risk zonation—why is it still so difficult?,” Bull. Eng. Geol. Environ., vol. 65, no. 2, pp. 167–184, May 2006. [10] P. Aleotti and R. Chowdhury, “Landslide hazard assessment: summary review and new perspectives,” Bull. Eng. Geol. Environ., vol. 58, no. 1, pp. 21–44, Aug. 1999. [11] J. Barredo, A. Benavides, J. Hervás, and C. J. van Westen, “Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana basin, Gran Canaria Island, Spain,” Int. J. Appl. earth Obs. Geoinf., vol. 2, no. 1, pp. 9–23, 2000. [12] J. Mendoza Ramírez and E. V. Aristizábal Giraldo, “Metodología para la zonificación de la susceptibilidad por movimientos en masa en proyectos lineales. Estudio de caso en elacueducto del municipio de Fredonia,Antioquia,” Ing. y Cienc., vol. 13, no. 26, pp. 173–206, 2017. [13] F. Guzzetti, A. Carrara, M. Cardinali, and P. Reichenbach, “Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy,” Geomorphology, vol. 31, no. 1–4, pp. 181–216, Dec. 1999. [14] P. L. Wilkinson, M. G. Anderson, and D. M. Lloyd, “An integrated hydrological model for rain-induced landslide prediction,” Earth Surf. Process. Landforms, vol. 27, no. 12, pp. 1285–1297, Nov. 2002. [15] S. Lacasse and F. Nadim, “Uncertainties in characterising soil properties,” in Uncertainty in the geologic environment: From theory to practice, 1996, pp. 49–75. [16] S. E. Cho, “Effects of spatial variability of soil properties on slope stability,” Eng. Geol., vol. 92, no. 3–4, pp. 97–109, Jul. 2007. [17] Departamento Administrativo Nacional de Estadística-DANE, “Sistema de Consulta información Censal-CENSO,” 2005. [Online]. Available: https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-general-2005-1/sistema-de-consulta-censo-2005. [18] R. L. Baum, W. Z. Savage, and J. W. Godt, “TRIGRS—a Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis,” Citeseer, 2002. [19] R. M. Iverson, “Landslide triggering by rain infiltration,” Water Resour. Res., vol. 36, no. 7, pp. 1897–1910, Jul. 2000. [20] R. L. Baum, J. W. Godt, and W. Z. Savage, “Estimating the timing and location of shallow rainfall‐induced landslides using a model for transient, unsaturated infiltration,” J. Geophys. Res. Earth Surf., vol. 115, p. 26, 2010. [21] D. W. Taylor, Fundamentals of Soil Mechanics, 2nd ed. Chapman And Hall, Limited, 1948. [22] C. A. Hidalgo-Montoya and A. Pacheco de Assis, “Herramientas para análisis por confiabilidad en geotecnia: Aplicación,” Rev. Ing. Univ. Medellín, vol. 10, no. 18, pp. 79–86, 2011. [23] G. B. Baecher and J. T. Christian, Reliability and statistics in geotechnical engineering. John Wiley & Sons, 2005. [24] Z.-Y. Wu, Q. Shi, Q. Guo, and J.-K. Chen, “CST-based first order second moment method for probabilistic slope stability analysis,” Comput. Geotech., vol. 85, pp. 51–58, May 2017. [25] C. C. da Silva, “Análise De Estabilidade De Um Talude da Cava de Alegria Utilizando Abordagem Probabilística,” Universidade Federal de Ouro Preto, 2015. [26] J. T. Christian, C. C. Ladd, and G. B. Baecher, “Reliability applied to slope stability analysis,” J. Geotech. Eng., vol. 120, no. 12, pp. 2180–2207, 1994. [27] Q. Ran, Y. Hong, W. Li, and J. Gao, “A modelling study of rainfall-induced shallow landslide mechanisms under different rainfall characteristics,” J. Hydrol., vol. 563, pp. 790–801, Aug. 2018. [28] D. Kim, S. Im, C. Lee, and C. Woo, “Modeling the contribution of trees to shallow landslide development in a steep, forested watershed,” Ecol. Eng., vol. 61, pp. 658–668, Dec. 2013. [29] F. Catani, S. Segoni, and G. Falorni, “An empirical geomorphology-based approach to the spatial prediction of soil thickness at catchment scale,” Water Resour. Res., vol. 46, no. 5, pp. 1–15, May 2010. [30] Área Metropolitana del valle de Aburrá (AMVA), “Microzonificación Sísmica detallada de los municipios de Barbosa, Girardota, Copacabana, Sabaneta, La Estrella, Caldas y Envigado,” 2006. [31] W. R. Dearman, F. J. Baynes, and T. Y. Irfan, “Engineering grading of weathered granite,” Eng. Geol., vol. 12, no. C, pp. 345–374, Jan. 1978. [32] Área Metropolitana del Valle de Aburrá, “Armonización de la microzonificación sísmica de los municipios del valle de Aburrá, al reglamento NSR-10 e inclusión de los cinco corregimientos del Municipio de Medellín,” 2014. [33] Solingral Ltda, “Estudio de riesgo al deslizamiento en el Municipio de Envigado,” 2004. [34] Alcandía Municipio de Envigado, “Actualización y profundización de estudios amenaza, vulnerabilidad y riesgo en la zona 3 y los barrios el Esmeraldal y la Inmaculada del Municipio de Envigado,” 2014. [35] A. M. de Envigado, “Actualización y Profundización de Estudios Amenaza, Vulnerabilidad y Riesgo en la Zona 6 del Municipio de Envigado,” 2013. [36] Minessota Department of Transportation, “2007 MnDOT Pavement Design Manual,” 2007. [37] NAVFAC, “Foundations & Earth Structures,” 1986. [38] T. V. Tran, M. Alvioli, G. Lee, and H. U. An, “Three-dimensional, time-dependent modeling of rainfall-induced landslides over a digital landscape: a case study,” Landslides, vol. 15, no. 6, pp. 1071–1084, Jun. 2018. [39] F. Wang and H. Shibata, “Influence of soil permeability on rainfall-induced flowslides in laboratory flume tests,” Can. Geotech. J., vol. 44, no. 9, pp. 1128–1136, 2007. [40] M. Rienzner and C. Gandolfi, “Investigation of spatial and temporal variability of saturated soil hydraulic conductivity at the field-scale,” Soil Tillage Res., vol. 135, pp. 28–40, 2014. [41] Corantioquia, “Consultoría para ajustar (actualizar) del plan de ordenación y manejo de la cuenca hidrográfica del río Aburrá – NSS (2701-01), localizada en el departamento de Antioquia, en jurisdicción de la Corporación Autónoma Aegional del Centro de Antioquia (Corantioquia),” 2016. [42] H. González, “Mapa geológico del Departamento de Antioquia,” 2001. [43] Swiss Standard SN 670010b, “Characteristic Coefficients of soils, Association of Swiss Road and Traffic Engineers,” 1999. [44] M. Carter and S. P. Bentley, Correlations of soil properties. Pentech press publishers, 1991. [45] M. Dysli and W. Steiner, Correlations in soil mechanics. PPUR Presses polytechniques, 2011. [46] E. García, F. Oka, and S. Kimoto, “Numerical analysis of a one‐dimensional infiltration problem in unsaturated soil by a seepage–deformation coupled method,” Int. J. Numer. Anal. Methods Geomech., vol. 35, no. 5, pp. 544–568, 2011. [47] I. Tsaparas, H. Rahardjo, D. Toll, and E. Leong, “Controlling parameters for rainfall-induced landslides,” Comput. Geotech., vol. 29, no. 1, pp. 1–27, Jan. 2002. [48] A. P. Assis, T. J. Espósito, M. G. Gardoni, P. Silva, and J. A. Maia, “Métodos estatísticos e probabilísticos em geotecnia,” 2002. [49] C. A. Hidalgo Montoya and A. Pacheco de Assis, “Herramientas para análisis por confiabilidad en geotecnia: La teoría,” Rev. Ing. Univ. Medellín, vol. 10, no. 18, pp. 69–78, 2011. [50] M. E. Harr, Reliability-Based Design in Civil Engineering. McGraw-Hill, 1987. [51] C. A. Hidalgo, “Incertezas, Vulnerabilidade e Avaliação de Risco Devido a Deslizamento em Estradas,” Universidad de Brasìlia, 2013. [52] J. M. Duncan, “Factors of Safety and Reliability in Geotechnical Engineering,” J. Geotech. Geoenvironmental Eng., vol. 126, no. 4, pp. 307–316, Apr. 2000. [53] US Army Corps of Engineers, “Engineering: Risk-based analysis in geotechnical engineering for support of planning studies,” Eng. Tech. Lett., p. 387, 1999. [54] Z. Liao, Y. Hong, D. Kirschbaum, R. F. Adler, J. J. Gourley, and R. Wooten, “Evaluation of TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis)’s predictive skill for hurricane-triggered landslides: a case study in Macon County, North Carolina,” Nat. hazards, vol. 58, no. 1, pp. 325–339, 2011. [55] S. Qasim and I. Harahap, “Geotechnical Uncertainties and Reliability Theory Applications,” Int. J. Eng. Res. Technol., vol. 1, no. 6, pp. 1–8, 2012. [56] J. T. Christian, “Geotechnical Engineering Reliability: How Well Do We Know What We Are Doing?,” J. Geotech. Geoenvironmental Eng., vol. 130, no. 10, pp. 985–1003, Oct. 2004. [57] R. Dikau and D. Brunsden, Landslide Recognition: Identification, Movement and Causes, 1st ed. Wiley, 1996. [58] C. García, “Estado del conocimiento de los depósitos de vertiente del valle de Aburrá,” Boletín Ciencias la Tierra, no. 19, pp. 99–112, 2006. [59] G. Botero, Contribución al conocimiento de la geología de la zona central de Antioquia. Universidad Nacional de Colombia, 1963. [60] J. J. Restrepo, “Unidades litológicas de los alrededores de Medellín,” in First conference about the geologic hazards of the Aburra Valley, 1984, vol. 1, pp. 1–26.
dc.rightsCopyright (c) 2019 TecnoLógicasen-US
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0en-US
dc.sourceTecnoLógicas; Vol. 22 No. 44 (2019); 111-129en-US
dc.sourceTecnoLógicas; Vol. 22 Núm. 44 (2019); 111-129es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectPhysical based modelen-US
dc.subjecttransient rainfall infiltrationen-US
dc.subjectslope stability analysisen-US
dc.subjectFOSM probabilistic Methoden-US
dc.subjectModelo de base físicaes-ES
dc.subjectinfiltración transitoria de lluviaes-ES
dc.subjectanálisis de estabilidad de laderases-ES
dc.subjectmétodo probabilístico FOSMes-ES
dc.titleImplementation of the TRIGRS model with reliability analysis for hazard assessment of shallow rainfall-triggered landslidesen-US
dc.titleImplementación del modelo TRIGRS con análisis de confiabilidad para la evaluación de la amenaza a movimientos en masa superficiales detonados por lluviaes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem