Mostrar el registro sencillo del ítem

Bloques de Tierra Comprimida (BTC) con aditivos bituminosos

dc.creatorDarío Cañola, Hernán
dc.creatorBuiles-Jaramillo, Alejandro
dc.creatorMedina, Carlos Andrés
dc.creatorGonzález-Castañeda, Gustavo Enrique
dc.date2018-09-14
dc.date.accessioned2021-03-18T21:11:22Z
dc.date.available2021-03-18T21:11:22Z
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1061
dc.identifier10.22430/22565337.1061
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/11750
dc.descriptionWalls made of soil present serious failures due to their exposure to rain and groundwater. In addition, due to their hygroscopic characteristics, compressed earth blocks (CEBs) present low resistance to water penetration and high capillary absorption coefficients. Therefore, CEBs combined with a cold asphalt emulsion were experimentally analyzed as an alternative to reduce their capillary absorption coefficient and improve their resistance to water penetration. The emulsion was incorporated in proportions of 25%, 50%, 75% and 100% with respect to the weight of water. The capillary absorption, resistance to compression, and moisture penetration of each sample were studied in order to calculate the optimal proportion of the mixture. Based on the results, CEBs with 50% asphalt emulsion exhibit the best characteristics of protection against humidity, thus guaranteeing the compressive strength required for traditional construction.en-US
dc.descriptionLos muros en tierra, presentan lesiones patológicas debido a su exposición al agua lluvia, y al agua proveniente del suelo. Además, por sus características de higroscopicidad los Bloques de Tierra Comprimida (BTC) presentan bajas resistencias a la penetración del agua y altos coeficientes de absorción capilar. Como alternativa para la reducción del coeficiente de absorción capilar e incremento de la resistencia a la penetración de agua se analizaron experimentalmente bloques de tierra comprimida adicionados con emulsión asfáltica en frío en proporciones del 0 %, 25 %, 50 %, 75 % y 100 %, respecto al peso del agua. Se estudió para cada una de las muestras la absorción capilar, resistencias a la compresión y penetración de humedad con el fin de evaluar la proporción optima de adición. Como resultado de la experimentación se determinó que los BTC adicionados con un 50 % de emulsión asfáltica presentan las mejores características de protección contra la humedad garantizando la resistencia a compresión necesaria para su uso en la construcción.es-ES
dc.formatapplication/pdf
dc.formattext/html
dc.formattext/xml
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1061/1069
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1061/1085
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1061/1222
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1061/1242
dc.relation/*ref*/C. Egenti, J. M. Khatib, and D. Oloke, “Conceptualisation and pilot study of shelled compressed earth block for sustainable housing in Nigeria,” Int. J. Sustain. Built Environ., vol. 3, no. 1, pp. 72–86, Jun. 2014. [2] C. Jayasinghe and N. Kamaladasa, “Compressive strength characteristics of cement stabilized rammed earth walls,” Constr. Build. Mater., vol. 21, no. 11, pp. 1971–1976, Nov. 2007. [3] M. Hall and Y. Djerbib, “Rammed earth sample production: context, recommendations and consistency,” Constr. Build. Mater., vol. 18, no. 4, pp. 281–286, May 2004. [4] P. Marais, J. Littlewood, and G. Karani, “The Use of Polymer Stabilised Earth Foundations for Rammed Earth Construction,” Energy Procedia, vol. 83, pp. 464–473, Dec. 2015. [5] H. Ben Ayed, O. Limam, M. Aidi, and A. Jelidi, “Experimental and numerical study of Interlocking Stabilized Earth Blocks mechanical behavior,” J. Build. Eng., vol. 7, pp. 207–216, Sep. 2016. [6] a. Tavares, A. Costa, F. Rocha, and A. Velosa, “Absorbent materials in waterproofing barriers, analysis of the role of diatomaceous earth,” Constr. Build. Mater., vol. 102, pp. 125–132, Jan. 2016. [7] M. Hall and Y. Djerbib, “Moisture ingress in rammed earth: Part 2 – The effect of soil particle-size distribution on the absorption of static pressure-driven water,” Constr. Build. Mater., vol. 20, no. 6, pp. 374–383, Jul. 2006. [8] P. Donkor and E. Obonyo, “Earthen construction materials: Assessing the feasibility of improving strength and deformability of compressed earth blocks using polypropylene fibers,” Mater. Des., vol. 83, pp. 813–819, Oct. 2015. [9] B. Taallah, A. Guettala, S. Guettala, and A. Kriker, “Mechanical properties and hygroscopicity behavior of compressed earth block filled by date palm fibers,” Constr. Build. Mater., vol. 59, pp. 161–168, May 2014. [10] F. Stazi, A. Nacci, F. Tittarelli, E. Pasqualini, and P. Munafò, “An experimental study on earth plasters for earthen building protection: The effects of different admixtures and surface treatments,” J. Cult. Herit., vol. 17, pp. 27–41, Jan. 2016. [11] M. I. Beas Guerrero de Luna, “Consolidation of traditional plasters : a laboratory research,” in Conferência internacional sobre o estudo e conservaçao da arquitectura de terra, 1993, pp. 410–416. [12] P. Doat, A. Hays, H. Houben, S. Matuk, and F. Vitoux, Construir con tierra, 2nd ed. CRAterre, 1979. [13] M. Lanzón and P. A. García-Ruiz, “Evaluation of capillary water absorption in rendering mortars made with powdered waterproofing additives,” Constr. Build. Mater., vol. 23, no. 10, pp. 3287–3291, Oct. 2009. [14] C. Zürcher and T. Frank, Physique du bâtiment. Construction et énergie. vdf Hochschulvlg, 2014. [15] H. D. Cañola and C. Echavarría, “Concrete blocks with bitumen emulsion for foundation walls,” Ing. y Desarro., vol. 35, no. 2, pp. 491–512, Jun. 2017. [16] Norma Técnica Colombiana, Bloques de suelo cemento para muros y divisiones. Definiciones. Especifícaciones. Métodos de ensayo. Condiciones de entrega: NTC 5324, ICONTEC. 2004. [17] Asociación Española de Normalización y Certificación, UNE 83982: durabilidad del hormigón : métodos de ensayo : determinación de la absorción de agua por capilaridad del hormigón endurecido : método Fagerlund. AENOR, 2008. [18] ASTM International, Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement concretes: ASTM C1585-04, vol. i. ASTM International, 2004. [19] E. Adam and A. Agib, “Compressed Stabilised Earth Block Manufacture in Sudan,” Paris, France, 2001. [20] P. Doat, A. Hays, H. Houben, S. Matuk, and F. Vitoux, Construir con tierra, 1st ed. 1979. [21] ASTM International, “Standard test method for particle-size analysis of soils: ASTM D 422,” 2007. [22] ASTM International, Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils: ASTM D4318-17e1, vol. 04.08. ASTM International, 2017. [23] J. L. Crissinger, CCS, and CCCA, “Measuring Moisture Resistance to Wind Driven Rain Using a RILEM Tube,” 2005. [24] D. Vandevoorde et al., “Validation of in situ Applicable Measuring Techniques for Analysis of the Water Adsorption by Stone,” Procedia Chem., vol. 8, pp. 317–327, 2013. [25] M. a. Wilson, M. a. Carter, and W. D. Hoff, “British standard and RILEM water absorption tests: A critical evaluation,” Mater. Struct., vol. 32, no. 8, pp. 571–578, Oct. 1999. [26] ASTM International, Standard Test Method for Pulse Velocity Through Concrete: ASTM C597-16. ASTM International, 2018. [27] A. Yalcin, “The effects of clay on landslides: A case study,” Appl. Clay Sci., vol. 38, no. 1–2, pp. 77–85, Dec. 2007. [28] A. Hemmat, N. Aghilinategh, Y. Rezainejad, and M. Sadeghi, “Long-term impacts of municipal solid waste compost, sewage sludge and farmyard manure application on organic carbon, bulk density and consistency limits of a calcareous soil in central Iran,” Soil Tillage Res., vol. 108, no. 1–2, pp. 43–50, May 2010. [29] C. Echavarría and H. D. Cañola, “Bloques de concreto con emulsión de parafina,” Lámpsakos, no. 17, pp. 14–19, 2017.
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/en-US
dc.sourceTecnoLógicas; Vol. 21 No. 43 (2018); 135-145en-US
dc.sourceTecnoLógicas; Vol. 21 Núm. 43 (2018); 135-145es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectCapillary suctionen-US
dc.subjectcompressed earth blocken-US
dc.subjectcold bitumen emulsionen-US
dc.subjectwater penetrationen-US
dc.subjectcompressive strengthen-US
dc.subjectAbsorción capilares-ES
dc.subjectbloque de tierra comprimidaes-ES
dc.subjectemulsión asfáltica en frioes-ES
dc.subjectpenetración de aguaes-ES
dc.subjectresistencia a la compresiónes-ES
dc.titleCompressed Earth Blocks (CEB) with bitumen emulsionen-US
dc.titleBloques de Tierra Comprimida (BTC) con aditivos bituminososes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeArticlesen-US
dc.typeArtículoses-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem