Mostrar el registro sencillo del ítem

Cálculo de primeros principios de las propiedades electrónicas y dieléctricas de λ-Ta2O5

dc.creatorValencia-Balvín, Camilo
dc.creatorPérez-Walton, Santiago
dc.creatorOsorio-Guillén, Jorge M.
dc.date2018-09-14
dc.date.accessioned2021-03-18T21:12:19Z
dc.date.available2021-03-18T21:12:19Z
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1064
dc.identifier10.22430/22565337.1064
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/11752
dc.descriptionTa2O5 is a wide-bandgap semiconductor that offers interesting applications in microwavecommunications, mainly related to the manufacture of filters and resonators whosesize is inversely proportional to the dielectric constant of the material. For that reason, inthis work we present a theoretical study, based on density functional theory (using PBEsoland hybrid HSE06 exchange-correlation functionals), of the electronic and dielectricproperties of the orthorhombic model -Ta2O5. We found that this model has a direct gap of2.09 and 3.7 eV with PBEsol and HSE06, respectively. Furthermore, the calculated staticdielectric constant, 51, is in good agreement with the reported values of other phases of thissemiconductor.en-US
dc.descriptionTa2O5 es un semiconductor de gap-ancho el cual tiene interesantes aplicaciones encomunicaciones en la región de las micro-ondas, principalmente está relacionado con lafabricación de filtros y resonadores, donde su tamaño es inversamente proporcional a laconstante dieléctrica del material. Por este motivo, en este trabajo presentamos un estudioteórico a partir de la teoría de los funcionales de la densidad (usando PBEsol y el híbridoHSE06 para el funcional de intercambio-correlación) de las propiedades electrónicas ydieléctricas del modelo ortorrómbico -Ta2O5. Aquí, encontramos que este modelo tiene ungap directo de 2.09 y 3.7 eV con PBEsol y HSE06, respectivamente. Además, la constantedieléctrica estática calculada es 51, en buen acuerdo con los valores reportados para otrasfases de este semiconductor.es-ES
dc.formatapplication/pdf
dc.formattext/html
dc.formattext/xml
dc.languageeng
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1064/1063
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1064/1078
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1064/1215
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1064/1236
dc.relation/*ref*/M.-J. Lee et al., “A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/ Ta2O5−x bilayer structures,” Nat. Mater., vol. 10, no. 8, pp. 625–630, Aug. 2011. [2] R. J. Cava, “Dielectric materials for applications in microwave communications,” J. Mater. Chem., vol. 11, no. 1, pp. 54–62, 2001. [3] K. J. Kumar, N. R. C. Raju, and A. Subrahmanyam, “Properties of pulsed reactive DC magnetron sputtered tantalum oxide (Ta2O5) thin films for photocatalysis,” Surf. Coatings Technol., vol. 205, pp. S261–S264, Jul. 2011. [4] S. Pérez-Walton, C. Valencia-Balvín, A. C. M. Padilha, G. M. Dalpian, and J. M. Osorio-Guillén, “A search for the ground state structure and the phase stability of tantalum pentoxide,” J. Phys. Condens. Matter, vol. 28, no. 3, p. 035801, Jan. 2016. [5] L. A. Aleshina and S. V Loginova, “Rietveld analysis of X-ray diffraction pattern from β- Ta2O5 oxide,” Crystallogr. Reports, vol. 47, no. 3, pp. 415–419, May 2002. [6] A. Fukumoto and K. Miwa, “Prediction of hexagonal Ta2O5 structure by first-principles calculations,” Phys. Rev. B, vol. 55, no. 17, pp. 11155–11160, May 1997. [7] R. Ramprasad, “First principles study of oxygen vacancy defects in tantalum pentoxide,” J. Appl. Phys., vol. 94, no. 9, pp. 5609–5612, Nov. 2003. [8] R. Nashed, W. M. I. Hassan, Y. Ismail, and N. K. Allam, “Unravelling the interplay of crystal structure and electronic band structure of tantalum oxide (Ta2O5),” Phys. Chem. Chem. Phys., vol. 15, no. 5, pp. 1352–1357, 2013. [9] W. Andreoni and C. A. Pignedoli, “Ta2O5 polymorphs: Structural motifs and dielectric constant from first principles,” Appl. Phys. Lett., vol. 96, no. 6, p. 062901, Feb. 2010. [10] S. H. Lee, J. Kim, S.-J. Kim, S. Kim, and G.-S. Park, “Hidden Structural Order in Orthorhombic Ta2O5,” Phys. Rev. Lett., vol. 110, no. 23, p. 235502, Jun. 2013. [11] A. Otero-de-la-Roza and V. Luaña, “Gibbs2: A new version of the quasi-harmonic model code. I. Robust treatment of the static data,” Comput. Phys. Commun., vol. 182, no. 8, pp. 1708–1720, Aug. 2011. [12] A. Otero-de-la-Roza, D. Abbasi-Pérez, and V. Luaña, “Gibbs2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation,” Comput. Phys. Commun., vol. 182, no. 10, pp. 2232–2248, Oct. 2011. [13] J. P. Perdew et al., “Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces,” Phys. Rev. Lett., vol. 100, no. 13, p. 136406, Apr. 2008. [14] J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys., vol. 118, no. 18, pp. 8207–8215, May 2003. [15] J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Erratum: ‘Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys., vol. 124, no. 21, p. 219906, Jun. 2006. [16] P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B, vol. 50, no. 24, pp. 17953–17979, Dec. 1994. [17] G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B, vol. 59, no. 3, pp. 1758–1775, Jan. 1999. [18] G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B, vol. 54, no. 16, pp. 11169–11186, Oct. 1996. [19] M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, “Linear optical properties in the projector-augmented wave methodology,” Phys. Rev. B, vol. 73, no. 4, p. 045112, Jan. 2006. [20] S. Pérez-Walton, C. Valencia-Balvín, G. M. Dalpian, and J. M. Osorio-Guillén, “Electronic, dielectric, and optical properties of the B phase of niobium pentoxide and tantalum pentoxide by first-principles calculations,” Phys. status solidi, vol. 250, no. 8, pp. 1644–1650, Aug. 2013. [21] I. E. Wachs, Y. Chen, J.-M. Jehng, L. E. Briand, and T. Tanaka, “Molecular structure and reactivity of the Group V metal oxides,” Catal. Today, vol. 78, no. 1–4, pp. 13–24, Feb. 2003. [22] S. Clima et al., “Dielectric Response of Ta2O5, NbTaO5 and Nb2O5 from First-Principles Investigations,” in ECS Transactions, 2009, vol. 19, pp. 729–737. [23] D.-X. Zhang et al., “Thickness-dependence of optical constants for Ta2O5 ultrathin films,” Appl. Phys. A, vol. 108, no. 4, pp. 975–979, Sep. 2012
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/en-US
dc.sourceTecnoLógicas; Vol. 21 No. 43 (2018); 43-52en-US
dc.sourceTecnoLógicas; Vol. 21 Núm. 43 (2018); 43-52es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectTa2O5en-US
dc.subjectdensity functional theoryen-US
dc.subjectPBEsolen-US
dc.subjectHSE06en-US
dc.subjectdielectric constanten-US
dc.subjectTa2O5es-ES
dc.subjectteoría de los funcionales de la densidades-ES
dc.subjectPBEsoles-ES
dc.subjectHSE06es-ES
dc.subjectconstante dieléctricaes-ES
dc.titleFirst principles calculations of the electronic and dielectric properties of λ-Ta2O5en-US
dc.titleCálculo de primeros principios de las propiedades electrónicas y dieléctricas de λ-Ta2O5es-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeArticlesen-US
dc.typeArtículoses-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem