Mostrar el registro sencillo del ítem
Development of XLPE compounds with low-toxicity flame retardant for cable insulation
Desarrollo de compuestos XLPE con retardantes de llama de baja toxicidad para aislamiento de cables
dc.creator | Gutiérrez, Leonardo | |
dc.creator | Mina, Jose H. | |
dc.date | 2019-05-15 | |
dc.date.accessioned | 2021-03-18T21:12:21Z | |
dc.date.available | 2021-03-18T21:12:21Z | |
dc.identifier | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1104 | |
dc.identifier | 10.22430/22565337.1104 | |
dc.identifier.uri | http://test.repositoriodigital.com:8080/handle/123456789/11757 | |
dc.description | Nine formulations of a flame retardant masterbatch with low environmental impact were developed, and the influence of their incorporation into a linear low-density polyethylene, grafted with a vinyltrimethoxysilane crosslinking agent, was evaluated for further crosslinking in order to obtain a cross-linked polyethylene with flame retardancy. The MBFRs were prepared using N, N-ethylene bis (tetrabromophthalamide) blended with antimony trioxide, zinc borate, linear low-density polyethylene, dispersing agent, and polyethylene wax, varying the N, N-ethylene bis (tetrabromophthalamide) (36, 42, and 45 %) and the dispersing agent (0.50, 1.25, and 2.00 %), while the rest of the components were kept constant. Subsequently, the nine developed flame retardant masterbatch were blended with the grafted linear low-density polyethylene to produce nine flame retardant cross-linked polyethylene compounds that were later shaped into plates and 14 AWG cable insulation for physicochemical characterization. The level used in both the fillers (N, N-ethylene bis-tetrabromophthalamide, antimony trioxide and zinc borate) and the dispersion agent conditioned the level of crosslinking estimated from the gel content, the flow performance, and the flame behavior of the material; the first two properties were favored by the increase in the dispersing agent, while the latter was improved with the increase in the proportion of fillers in the mixture. Likewise, the evaluation of the flame retardant cross-linked polyethylene compound manufactured with a commercial MBFRC, taken as a reference, showed that some of the formulations analyzed in this study can be used for electric cable insulation. | en-US |
dc.description | Se desarrollaron nueve formulaciones de un masterbatch retardante a la llama de bajo impacto medioambiental y se evaluó la influencia de su incorporación en un polietileno lineal de baja densidad, injertado con un agente de entrecruzamiento viniltrimetoxisilano, para su posterior reticulación con el fin de obtener un polietileno entrecruzado con retardancia a la llama. Los masterbatch retardantes a la llama se prepararon a partir del uso de N, N-etilen bis(tetrabromoftalamida), mezclado con: trióxido de antimonio, borato de zinc, polietileno lineal de baja densidad, agente de dispersión y cera polietilenica, variando el N,N-etilen bis(tetrabromoftalamida) (36, 42 y 45 %) y el agente de dispersión (0.50, 1.25 y 2.00 %), mientras se mantuvo constante el resto de componentes. Posteriormente, los nueve masterbatch desarrollados se mezclaron con el polietileno lineal de baja densidad injertado para la producción de nueve compuestos de polietileno entrecruzado retardante de lama que luego se conformaron en forma de placas y aislamiento de cable 14 AWG para su caracterización fisicoquímica. Se encontró que el nivel empleado tanto en las cargas (N,N-etilen bis-tetrabromoftalamida, trióxido de antimonio y borato de zinc) como en el agente de dispersión condicionaron el nivel de entrecruzamiento estimado a partir del contenido de gel, las características de flujo y el comportamiento frente a la llama del material; siendo favorecidas las primeras dos propiedades con el incremento del agente de dispersión, en tanto que la última se vio mejorada con el aumento en la proporción de las cargas usadas. De igual manera, la evaluación de un compuesto de polietileno entrecruzado retardante a la llama fabricado con un masterbatch retardante a la llama comercial, tomado como referencia, evidenció que algunas de las formulaciones trabajadas en esta investigación son susceptibles de ser empleadas para el aislamiento de cables eléctricos. | es-ES |
dc.format | application/pdf | |
dc.format | text/xml | |
dc.format | text/html | |
dc.language | spa | |
dc.publisher | Instituto Tecnológico Metropolitano (ITM) | en-US |
dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1104/1189 | |
dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1104/1287 | |
dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1104/1392 | |
dc.relation | /*ref*/Y. Murata et al., “Development of High Voltage DC-XLPE Cable System,” SEI Tech. Rev., no. 76, pp. 55–62, Apr 2013. [2] N. Hampton, N. Rick Hartlein, H. Leenartsson, O. Harry Orton, and R. Ramachandran, “Long-Life XLPE Insulated Power Cable,” Jicable 07, pp. 1–6, 2007. [3] F. Ciuprina, G. Teissèdre, J. C. Filippini, A. Smedberg, A. Campus, and N. Hampton, “Chemical crosslinking of polyethylene and its effect on water tree initiation and propagation,” IEEE Trans. Dielectr. Electr. Insul., vol. 17, no. 3, pp. 709–715,Jun. 2010. https://doi.org/10.1109/TDEI.2010.5492242. [4] A. D. Quintero, “Propuesta de un portafolio de productos para el largo plazo en una compañia manufacturera de cables, utilizando mapas de ruta (Roadmaps),” Universidad del Valle, 2016. [5] S. M. Tamboli, S. T. Mhaske, and D. D. Kale, “Crosslinked polyethylene,” Indian J. Chem. Technol., vol. 11, pp. 853–864, Jul. 2004. [6] V. a a Banks, P. H. Fraser, and a J. Willis, “Chapter 9 Wires and cables Principles of power cable design,” in Newnes Electrical Power Engineer’s Handbook, 2nd ed., D. Gracias and A. J. Willis, Eds. Oxford: Newnes, 2005, pp. 247–277. [7] M. P. Ricardo Leon and A. M. Henao, “Dimensionamiento de cables de potencia aislados,” Pontificia Bolivariana, 2013. [8] A. Bhattacharya, J. W. Rawlins, and P. Ray, Polymer Grafting and Crosslinking. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. https://doi.org/10.1002/9780470414811. [9] A. Wilkie, Charles; Morgan, Fire Retardancy of Polymeric Materials, 2nd ed. Boca Raton: CRC Press, Taylor & Francis Group,Usa, 2010. [10] S. Kemmlein, D. Herzke, and R. J. Law, “Brominated flame retardants in the European chemicals policy of REACH-Regulation and determination in materials,” J. Chromatogr. A, vol. 1216, no. 3, pp. 320–333, 2009. https://doi.org/10.1016/j.chroma.2008.05.085. [11] J. Markarian, “Regulatory issues drive developments in wire and cable,” Plast. Addit. Compd., vol. 9, no. 4, pp. 32–35, Jul. 2007. https://doi.org/10.1016/S1464-391X(07)70106-X. [12] E. Díaz, R. Alonso, R. Valenciano, and I. M. De Arenaza, “Determinación de retardantes de llama bromados en plásticos de equipos eléctricos y electrónicos,” Forum de Sostenibilidad, vol. 2, pp. 67–78,Jan. 2008. [13] T. Akbulut, N. Ayrilmis, T. Dundar, and A. Durmus, “Effect of Boron and Phosphate Compounds on Thermal and Fire Properties of Wood / HDPE Composites,” Int. J. Polym. Technol., vol. 3, no. 2, pp. 67–75,Aug. 2011. [14] S. Gu et al., “Brominated flame retardants in marine environment focused on aquaculture area : Occurrence , source and bioaccumulation,” Sci. Total Environ., vol. 601–602, pp. 1182–1191, Dec. 2017. https://doi.org/10.1016/j.scitotenv.2017.05.209. [15] J. Guo, M. Venier, A. Salamova, and R. A. Hites, “Bioaccumulation of Dechloranes, organophosphate esters, and other flame retardants in Great Lakes fish,” Sci. Total Environ., vol. 583, pp. 1–9, Apr. 2017. https://doi.org/10.1016/j.scitotenv.2016.11.063. [16] M. Iqbal et al., “Legacy and emerging flame retardants (FRs) in the freshwater ecosystem: A review,” Environ. Res., vol. 152, pp. 26–42, Jan. 2017. https://doi.org/10.1016/j.envres.2016.09.024. [17] U. Kim, I. Lee, and J. Oh, “Occurrence, removal and release characteristics of dissolved brominated flame retardants and their potential metabolites in various kinds of wastewater,” Environ. Pollut., vol. 218, pp. 551–557,nov. 2016. https://doi.org/10.1016/j.envpol.2016.07.037. [18] J. P. Boon et al., “Levels of polybrominated diphenyl ether (PBDE) flame retardants in animals representing different trophic levels of the North Sea food Web.,” Environ. Sci. Technol., vol. 36, no. 19, pp. 4025–4032, Oct. 2002. https://doi.org/10.1021/es0158298. [19] A. Covaci et al., “Hexabromocyclododecanes (HBCDs) in the Environment and Humans: A Review,” Environ. Sci. Technol., vol. 40, no. 12, pp. 3679–3688, Jun. 2006. https://doi.org/10.1021/es0602492. [20] R. J. Law et al., “Levels and trends of polybrominated diphenylethers and other brominated flame retardants in wildlife,” Environ. Int., vol. 29, no. 6, pp. 757–770, Sep. 2003. https://doi.org/10.1016/S0160-4120(03)00110-7. [21] K. Öberg, K. Warman, and T. Öberg, “Distribution and levels of brominated flame retardants in sewage sludge,” Chemosphere, vol. 48, no. 8, pp. 805–809, Sep. 2002. https://doi.org/10.1016/S0045-6535(02)00113-3. [22] A. Schecter, M. Pavuk, O. Päpke, J. J. Ryan, L. Birnbaum, and R. Rosen, “Polybrominated diphenyl ethers (PBDEs) in U.S. mothers’ milk.,” Environ. Health Perspect., vol. 111, no. 14, pp. 1723–1729, Nov. 2003. https://doi.org/10.1289/ehp.6466. [23] Sub-Group on Review of the Priority Subtances List, “PolyBDEs EQS dossier 2011,” 2011. [24] U S Environmental Protection Agency (EPA), “An Alternatives Assessment for the Flame Retardant Decabromodiphenyl Ether (DecaBDE) Executive Summary,” no. January. United States Environmental Protection Agency, p. (4)339--(4)359, 2014. [25] U.S. Environmental Protection Agency (EPA), “Toxicological review of Decabromodiphenyl Ether (BDE-209),” United States Environmental Protection Agency, Washinton, DC, 2008. [26] U. S. E. P. A. (EPA), “Toxicological review of 2,2’,4,4’,5-pentabromodiphenyl ether (BDE-99).” Washington, pp. 1–74, 2008. [27] United Nations (UNEP), “Report of the persistent organic pollutants review committee on the work of its seventh meeting,” United Nations, Stockholm, 2011. [28] Parlamento Europeo y del Consejo, Directiva 2002/95/CE del parlamento europeo y del consejo de 27 de enero de 2003 sobre restricciones a la utilización de determinadas sustancias peligrosas en aparatos eléctricos y electrónicos. Bruselas, 2003, pp. 19–23. [29] F. Stuer-lauridsen, K. Cohr, and T. T. Andersen, “Health and Environmental Assessment of Alternatives to Deca-BDE in Electrical and Electronic Equipment,” Danish Ministry of the Environment, 2007. [30] ASTM International, “ASTM D 2765. Standard Test Methods for Determination of Gel Content and Swell Ratio of Crosslinked Ethylene Plastics,” Annual Book of ASTM Standards. ASTM International, West Conshohocken, pp. 1–8, 2016. https://doi.org/10.1520/D2765-16. [31] G. L. Oliveira and M. F. Costa, “Optimization of process conditions, characterization and mechanical properties of silane crosslinked high-density polyethylene,” Mater. Sci. Eng. A, vol. 527, no. 18–19, pp. 4593–4599, Jul. 2010. https://doi.org/10.1016/j.msea.2010.03.102. [32] K. Sirisinha, M. Boonkongkaew, and S. Kositchaiyong, “The effect of silane carriers on silane grafting of high-density polyethylene and properties of crosslinked products,” Polym. Test., vol. 29, no. 8, pp. 958–965, Dec. 2010. https://doi.org/10.1016/j.polymertesting.2010.08.004. [33] R. P. De Melo, V. D. O. Aguiar, and M. D. F. V. Marques, “Silane Crosslinked Polyethylene from Different Commercial PE’s: Influence of Comonomer, Catalyst Type and Evaluation of HLPB as Crosslinking Coagent,” Mater. Res., vol. 18, no. 2, pp. 313–319, Apr 2015. https://doi.org/10.1590/1516-1439.303214. [34] K. Sirisinha and M. Boonkongkaew, “Improved silane grafting of high-density polyethylene in the melt by using a binary initiator and the properties of silane-crosslinked products,” J. Polym. Res., vol. 20, no. 4, p. 120, Apr. 2013. https://doi.org/10.1007/s10965-013-0120-x. [35] ASTM International, “ASTM D 2863 - 00 Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics (Oxygen Index),” Annu. B. ASTM Stand., vol. 8, no. 1, pp. 1–15, 2017. https://doi.org/10.1520/D2863-00. [36] U. L. Inc, “Thermoset-Insulated Wires and Cables,” UL 44 Standar Saf., pp. 30–31, 2018. [37] S. S. Sengupta, A. Ghosh-Dastidar, A. Flory, D. McDaniel, and P. Smith, “Evolution of Crosslinks During Moisture Cure of Ethylene-vinylalkoxysilane Copolymers in Power Cables,” Int. Wire Cable Symp., vol. 57, pp. 146–151, 2008. [38] G. B. Shah, M. Fuzail, and J. Anwar, “Aspects of the crosslinking of polyethylene with vinyl silane,” J. Appl. Polym. Sci., vol. 92, no. 6, pp. 3796–3803, 2004. https://doi.org/10.1002/app.20381. [39] A. Ghosh-dastidar, S. S. Sengupta, A. Flory, and J. M. Cogen, “Effect of Silane Grafting Level and Crosslink Structure on Properties of Moisture Crosslinkable Systems,” in Dow Chemical Company, 2008, vol. 57, pp. 138–145. [40] H. Azizi, J. Barzin, and J. Morshedian, “Silane crosslinking of polyethylene: The effects of EVA, ATH and Sb2O3 on properties of the production in continuous grafting of LDPE,” Express Polym. Lett., vol. 1, no. 6, pp. 378–384, May. 2007. https://doi.org/10.3144/expresspolymlett.2007.53. [41] J. Morshedian and P. M. Hosseinpour, “Polyethylene Cross-linking by Two-step Silane Method: A Review,” Iran. Polym. J., vol. 18, no. 2, pp. 103–128, 2009. [42] A. Maltby and R. E. Marquis, “Slip Additives for Film Extrusion,” J. Plast. Film Sheeting, vol. 14, no. 2, pp. 111–120, Apr. 1998. https://doi.org/10.1177/875608799801400204. [43] C. M. Mahabir, “US5430091 Moisture crosslinkable flame retardant compositions for cable applications,” 1995. [44] N. Wang, D. Xiang, P. Mo, and Y. Lu, “Flame retardant low density polyethylene with aluminium hydroxide / commercial fire retardants FR01 synergistic system,” Adv. Mater. Res., vol. 652–654, pp. 485–489, Jan. 2013. https://doi.org/10.4028/www.scientific.net/AMR.652-654.485. [45] M. Bar, R. Alagirusamy, and A. Das, “Flame retardant polymer composites,” Fibers Polym., vol. 16, no. 4, pp. 705–717, Apr. 2015. https://doi.org/10.1007/s12221-015-0705-6. [46] Y. M. Tovar, “Desarrollo de un compuesto de polietileno reticulable con retardante de llama libre de halogeno y baja emision de humo como material de aislamiento en la fabricación de cables para baja tension en la empres Centelsa,” Universidad del Valle, 2012. [47] T. R. Hull, A. Witkowski, and L. Hollingbery, “Fire retardant action of mineral fillers,” Polym. Degrad. Stab., vol. 96, no. 8, pp. 1462–1469, Aug. 2011. https://doi.org/10.1016/j.polymdegradstab.2011.05.006. [48] A. Dasari, Z. Yu, G. Cai, and Y. Mai, “Recent developments in the fire retardancy of polymeric materials,” Prog. Polym. Sci., vol. 38, no. 9, pp. 1357–1387, Sep. 2013. https://doi.org/10.1016/j.progpolymsci.2013.06.006. [49] A. Ramani and A. E. Dahoe, “On the performance and mechanism of brominated and halogen free fl ame retardants in formulations of glass fi bre reinforced poly ( butylene terephthalate ),” Polym. Degrad. Stab., vol. 104, pp. 71–86, Jun. 2014. https://doi.org/10.1016/j.polymdegradstab.2014.03.021. [50] S.-Y. Lu and I. Hamerton, “Recent developments in the chemistry of halogen-free flame retardant polymers,” Prog. Polym. Sci., vol. 27, no. 8, pp. 1661–1712, Oct. 2002. https://doi.org/10.1016/S0079-6700(02)00018-7. [51] F. Laoutid, L. Bonnaud, M. Alexandre, J.-M. Lopez-Cuesta, and P. Dubois, “New prospects in flame retardant polymer materials: From fundamentals to nanocomposites,” Mater. Sci. Eng. R Reports, vol. 63, no. 3, pp. 100–125, Jan. 2009. https://doi.org/10.1016/j.mser.2008.09.002. [52] L. Qiu, R. Xie, P. Ding, and B. Qu, “Preparation and characterization of Mg (OH) 2 nanoparticles and flame-retardant property of its nanocomposites with EVA,” Compos. Struct., vol. 62, no. 3–4, pp. 391–395,Jan. 2003. https://doi.org/10.1016/j.compstruct.2003.09.010. [53] V. Y. Ushakov, “Electric Strength of Dielectric Materials in a Hostile Environment,” in Insulation of High-Voltage Equipment, 2004th ed., Springer-Verlag, Ed. Berlin: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, 2004, pp. 195–263. | |
dc.rights | Copyright (c) 2019 TecnoLógicas | en-US |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/4.0 | en-US |
dc.source | TecnoLógicas; Vol. 22 No. 45 (2019); 73-90 | en-US |
dc.source | TecnoLógicas; Vol. 22 Núm. 45 (2019); 73-90 | es-ES |
dc.source | 2256-5337 | |
dc.source | 0123-7799 | |
dc.subject | Cable Insulation | en-US |
dc.subject | Crosslinked Polyethylene | en-US |
dc.subject | Flame Retardant | en-US |
dc.subject | Masterbatch | en-US |
dc.subject | Aislamiento de Cables | es-ES |
dc.subject | Polietileno Entrecruzado | es-ES |
dc.subject | Retardantes de Llama | es-ES |
dc.subject | Masterbatch | es-ES |
dc.title | Development of XLPE compounds with low-toxicity flame retardant for cable insulation | en-US |
dc.title | Desarrollo de compuestos XLPE con retardantes de llama de baja toxicidad para aislamiento de cables | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Research Papers | en-US |
dc.type | Artículos de investigación | es-ES |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
tecnologia [520]