Mostrar el registro sencillo del ítem

Prostasomas: búsqueda de biomarcadores para la detección temprana del cáncer prostático

dc.creatorGarcía, Manuela Antonia
dc.creatorRueda, Julieth
dc.creatorPedroza-Díaz, Johanna
dc.date2019-01-15
dc.date.accessioned2021-03-18T21:12:22Z
dc.date.available2021-03-18T21:12:22Z
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1181
dc.identifier10.22430/22565337.1181
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/11767
dc.descriptionProstate cancer is the second most diagnosed disease in men worldwide, with an increasing mortality rate in recent years. Currently, there are two early detection tests, the measurement of blood levels of prostate-specific antigen and digital rectal examination of the prostate. However, these tests do not present optimal specificity and sensitivity for their detection. Although different studies have looked for new biomarkers by means of the implementation of technologies, such as new generation sequencing, mass spectrometry, among others, the same disadvantages persist, therefore, they have not allowed their use in clinical practice; The discovery of new biomarkers for the diagnosis of prostate cancer is a challenge for the scientific community. Prostasomes correspond to extracellular vesicles secreted by normal prostate or tumor tissue that can be detected in different fluids. Structurally, prostasomes differ from other exosomes, by their size, membrane composition and specific protein content, which makes them a potential and novel source of clinical biomarkers. In this context, this review presents an overview of protein biomarkers, isolated from prostasomes present in different biological fluids, for the possible diagnosis of prostate cancer. For this, a systematic PubMed search was carried out for studies in proteomics for prostate cancer, with criteria such as extracellular vesicles, exosomes and prostasomes, as well as blood, urine, seminal fluid, among other biological samples.en-US
dc.descriptionEl cáncer de próstata es la segunda enfermedad más diagnosticada en hombres a nivel mundial, con una tasa de mortalidad creciente en los últimos años. Actualmente, se cuenta con dos pruebas de detección temprana: la medición de los niveles en sangre del antígeno prostático específico y el tacto rectal de la próstata. Sin embargo, estas pruebas no presentan óptima especificidad y sensibilidad para su detección. Aunque diferentes estudios han buscado nuevos biomarcadores mediante la implementación de tecnologías, como secuenciación de nueva generación, espectrometría de masas, entre otras, aún persisten las mismas desventajas, por lo que no les ha permitido a estos su uso en la práctica clínica; razón por la cual, el descubrimiento de nuevos biomarcadores para el diagnóstico de cáncer de próstata, constituye un desafío para la comunidad científica. Los prostasomas corresponden a vesículas extracelulares secretadas por el tejido prostático normal o tumoral que pueden ser detectadas en diferentes fluidos. Estructuralmente, los prostasomas difieren de otros exosomas, por su tamaño, composición de membrana y contenido específico de proteínas, lo que los convierten en una fuente potencial y novedosa de biomarcadores clínicos.  En este contexto, esta revisión presenta un panorama general de los biomarcadores proteicos, aislados desde prostasomas presentes en diferentes fluidos biológicos, para el posible diagnóstico de cáncer de próstata. Para ello se realizó una búsqueda sistemática en PubMed para estudios en proteómica para cáncer de próstata, con criterios como: vesículas extracelulares, exosomas y prostasomas, asimismo, sangre, orina, líquido seminal, entre otras muestras biológicas.es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.formattext/html
dc.languagespa
dc.languageeng
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1181/1176
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1181/1231
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1181/1414
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1181/1879
dc.relation/*ref*/B. Pullar and N. Shah, “Prostate cancer,” Surg., vol. 34, no. 10, pp. 505–511, Oct. 2016. [2] J. Ferlay et al., “GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012 v1.0,” International Agency for Research on Cancer, 2012. [Online]. Available: http://publications.iarc.fr/Databases/Iarc-Cancerbases/GLOBOCAN-2012-Estimated-Cancer-Incidence-Mortality-And-Prevalence-Worldwide-In-2012-V1.0-2012. [3] Organización Mundial de la Salud and Organización Panamericana de la Salud, “Plataforma de información en salud de las Américas,” OPS, 2017. [Online]. Available: https://www.paho.org/hq/index.php?option=com_tabs&view=article&id=2151&Itemid=3632&lang=es. [4] A. R. Lima, M. de L. Bastos, M. Carvalho, and P. Guedes de Pinho, “Biomarker Discovery in Human Prostate Cancer: an Update in Metabolomics Studies,” Transl. Oncol., vol. 9, no. 4, pp. 357–370, Aug. 2016. [5] Y. A. Goo and D. R. Goodlett, “Advances in proteomic prostate cancer biomarker discovery,” J. Proteomics, vol. 73, no. 10, pp. 1839–1850, Sep. 2010. [6] R. A. Castillejos-Molina and F. B. Gabilondo-Navarro, “Prostate Cancer,” Salud Publica Mex., vol. 58, no. 2, pp. 279–284, 2016. [7] Instituto Nacional del Cáncer, “Análisis del antígeno prostático específico (PSA) - National Cancer Institute.” [Online]. Available: https://www.cancer.gov/espanol/tipos/prostata/hoja-informativa-psa. [8] A. Heidenreich et al., “EAU Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Treatment of Clinically Localised Disease,” Eur. Urol., vol. 59, no. 1, pp. 61–71, Jan. 2011. [9] S. Loeb and W. J. Catalona, “The Prostate Health Index: a new test for the detection of prostate cancer,” Ther. Adv. Urol., vol. 6, no. 2, pp. 74–77, Apr. 2014. [10] M. Lazzeri et al., “Relationship of Chronic Histologic Prostatic Inflammation in Biopsy Specimens With Serum Isoform [-2]proPSA (p2PSA), %p2PSA, and Prostate Health Index in Men With a Total Prostate-specific Antigen of 4-10 ng/mL and Normal Digital Rectal Examination,” Urology, vol. 83, no. 3, pp. 606–612, Mar. 2014. [11] D. Hessels et al., “DD3PCA3-based Molecular Urine Analysis for the Diagnosis of Prostate Cancer,” Eur. Urol., vol. 44, no. 1, pp. 8–16, Jul. 2003. [12] Y. Fradet et al., “uPM3, a new molecular urine test for the detection of prostate cancer,” Urology, vol. 64, no. 2, pp. 311–315, Aug. 2004. [13] R. Wang, A. M. Chinnaiyan, R. L. Dunn, K. J. Wojno, and J. T. Wei, “Rational approach to implementation of prostate cancer antigen 3 into clinical care,” Cancer, vol. 115, no. 17, pp. 3879–3886, Sep. 2009. [14] M. A. Álvarez-Blanco, P. M. Escudero-de los-Ríos, and H.-T. N, “Cáncer de próstata,” Rev. Mex. Urol., vol. 68, no. 4, pp. 245–254, 2008. [15] M. Aalberts, T. A. E. Stout, and W. Stoorvogel, “Prostasomes: extracellular vesicles from the prostate,” Reproduction, vol. 147, no. 1, pp. R1–R14, Jan. 2014. [16] J. Nilsson et al., “Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer,” Br. J. Cancer, vol. 100, no. 10, pp. 1603–1607, May 2009. [17] C. Zijlstra and W. Stoorvogel, “Prostasomes as a source of diagnostic biomarkers for prostate cancer,” J. Clin. Invest., vol. 126, no. 4, pp. 1144–1151, Apr. 2016. [18] F. Saez and R. Sullivan, “Prostasomes, post-testicular sperm maturation and fertility,” Front. Biosci. (Landmark Ed., vol. 21, pp. 1464–73, 2016. [19] G. Ronquist, “Prostasomes are mediators of intercellular communication: from basic research to clinical implications,” J. Intern. Med., vol. 271, no. 4, pp. 400–413, Apr. 2012. [20] A. G. Utleg et al., “Proteomic analysis of human prostasomes,” Prostate, vol. 56, no. 2, pp. 150–161, Jul. 2003. [21] K. G. Ronquist, G. Ronquist, A. Larsson, and L. Carlsson, “Proteomic analysis of prostate cancer metastasis-derived prostasomes,” Anticancer Res., vol. 30, no. 2, pp. 285–290, Feb. 2010. [22] S. A. Melo et al., “Glypican-1 identifies cancer exosomes and detects early pancreatic cancer,” Nature, vol. 523, no. 7559, pp. 177–182, Jul. 2015. [23] G. Tavoosidana et al., “Multiple recognition assay reveals prostasomes as promising plasma biomarkers for prostate cancer,” Proc. Natl. Acad. Sci., vol. 108, no. 21, pp. 8809–8814, May 2011. [24] D. a Sartori and D. W. Chan, “Biomarkers in prostate cancer,” Curr. Opin. Oncol., vol. 26, no. 3, pp. 259–264, May 2014. [25] B. O. Nilsson, L. Carlsson, A. Larsson, and G. Ronquist, “Autoantibodies to Prostasomes as New Markers for Prostate Cancer,” Ups. J. Med. Sci., vol. 106, no. 1, pp. 43–50, Jan. 2001. [26] S. Fredriksson et al., “Protein detection using proximity-dependent DNA ligation assays,” Nat. Biotechnol., vol. 20, no. 5, pp. 473–477, May 2002. [27] J. Gu, L. Ren, X. Wang, C. Qu, and Y. Zhang, “Expression of livin, survivin and caspase-3 in prostatic cancer and their clinical significance.,” Int. J. Clin. Exp. Pathol., vol. 8, no. 11, pp. 14034–9, 2015. [28] S. Khan et al., “Racial differences in the expression of inhibitors of apoptosis (IAP) proteins in extracellular vesicles (EV) from prostate cancer patients,” PLoS One, vol. 12, no. 10, p. e0183122, Oct. 2017. [29] S. Khan, J. M. S. Jutzy, J. R. Aspe, D. W. McGregor, J. W. Neidigh, and N. R. Wall, “Survivin is released from cancer cells via exosomes,” Apoptosis, vol. 16, no. 1, pp. 1–12, Jan. 2011. [30] S. Khan et al., “Plasma-Derived Exosomal Survivin, a Plausible Biomarker for Early Detection of Prostate Cancer,” PLoS One, vol. 7, no. 10, p. e46737, Oct. 2012. [31] K. Gabriel et al., “Regulation of the Tumor Suppressor PTEN through Exosomes: A Diagnostic Potential for Prostate Cancer,” PLoS One, vol. 8, no. 7, p. e70047, Jul. 2013. [32] X. Huang et al., “Exosomal miR-1290 and miR-375 as Prognostic Markers in Castration-resistant Prostate Cancer,” Eur. Urol., vol. 67, no. 1, pp. 33–41, Jan. 2015. [33] R. J. Bryant et al., “Changes in circulating microRNA levels associated with prostate cancer,” Br. J. Cancer, vol. 106, no. 4, pp. 768–774, Feb. 2012. [34] P. Filipazzi, M. Bürdek, A. Villa, L. Rivoltini, and V. Huber, “Recent advances on the role of tumor exosomes in immunosuppression and disease progression,” Semin. Cancer Biol., vol. 22, no. 4, pp. 342–349, Aug. 2012. [35] M. Lundholm et al., “Prostate Tumor-Derived Exosomes Down-Regulate NKG2D Expression on Natural Killer Cells and CD8+ T Cells: Mechanism of Immune Evasion,” PLoS One, vol. 9, no. 9, p. e108925, Sep. 2014. [36] A. Gámez-Valero, S. Lozano-Ramos, I. Bancu, R. Lauzurica-Valdemoros, and F. E. Borrà s, “Urinary Extracellular Vesicles as Source of Biomarkers in Kidney Diseases,” Front. Immunol., vol. 6, p. 6, Jan. 2015. [37] S. Principe et al., “In-depth proteomic analyses of exosomes isolated from expressed prostatic secretions in urine,” Proteomics, vol. 13, no. 10–11, pp. 1667–1671, May 2013. [38] Skog et al., “Uso de microvesículas en el diagnóstico, pronóstico y tratamiento de enfermedades y afecciones médicas,” 2 446 301, 2013. [39] A. Øverbye et al., “Identification of prostate cancer biomarkers in urinary exosomes,” Oncotarget, vol. 6, no. 30, pp. 30357–30376, Oct. 2015. [40] R. W. Cotton and M. B. Fisher, “Review: Properties of sperm and seminal fluid, informed by research on reproduction and contraception,” Forensic Sci. Int. Genet., vol. 18, pp. 66–77, Sep. 2015. [41] M. J. Roberts, R. S. Richards, R. A. Gardiner, and L. A. Selth, “Seminal fluid: a useful source of prostate cancer biomarkers?,” Biomarkers in Medicine, vol. 9, no. 2. Future Medicine Ltd London, UK, pp. 77–80, Feb-2015. [42] A. Lo Cicero, P. D. Stahl, and G. Raposo, “Extracellular vesicles shuffling intercellular messages: for good or for bad,” Curr. Opin. Cell Biol., vol. 35, pp. 69–77, Aug. 2015. [43] L. Carlsson, O. Nilsson, A. Larsson, M. Stridsberg, G. Sahlén, and G. Ronquist, “Characteristics of human prostasomes isolated from three different sources,” Prostate, vol. 54, no. 4, pp. 322–330, Mar. 2003. [44] M. R. Kovak, S. Saraswati, S. D. Goddard, and A. B. Diekman, “Proteomic identification of galectin-3 binding ligands and characterization of galectin-3 proteolytic cleavage in human prostasomes,” Andrology, vol. 1, no. 5, pp. 682–691, Sep. 2013. [45] A. S. Block, S. Saraswati, C. F. Lichti, M. Mahadevan, and A. B. Diekman, “Co-purification of Mac-2 binding protein with galectin-3 and association with prostasomes in human semen,” Prostate, vol. 71, no. 7, pp. 711–721, May 2011. [46] M. J. Roberts et al., “Diagnostic performance of expression of PCA3, Hepsin and miR biomarkers inejaculate in combination with serum PSA for the detection of prostate cancer,” Prostate, vol. 75, no. 5, pp. 539–549, Apr. 2015. [47] L. Dubois et al., “Malignant cell-derived extracellular vesicles express different chromogranin epitopes compared to prostasomes,” Prostate, vol. 75, no. 10, pp. 1063–1073, Jul. 2015. [48] A. A. Babiker, G. Ronquist, B. Nilsson, and K. N. Ekdahl, “Overexpression of ecto-protein kinases in prostasomes of metastatic cell origin,” Prostate, vol. 66, no. 7, pp. 675–686, May 2006. [49] J. H. Teixeira, A. M. Silva, M. I. Almeida, M. A. Barbosa, and S. G. Santos, “Circulating extracellular vesicles: Their role in tissue repair and regeneration,” Transfus. Apher. Sci., vol. 55, no. 1, pp. 53–61, 2016. [50] J. J. Tosoian, H. B. Carter, A. Lepor, and S. Loeb, “Active surveillance for prostate cancer: current evidence and contemporary state of practice,” Nat. Rev. Urol., vol. 13, no. 4, pp. 205–215, Apr. 2016. [51] S. P. Basourakos et al., “Baseline and longitudinal plasma caveolin-1 level as a biomarker in active surveillance for early-stage prostate cancer,” BJU Int., vol. 121, no. 1, pp. 69–76, Jan. 2018. [52] T. Pellinen et al., “ITGB1-dependent upregulation of Caveolin-1 switches TGFβ signalling from tumour-suppressive to oncogenic in prostate cancer,” Sci. Rep., vol. 8, no. 1, p. 2338, Dec. 2018. [53] P. Gimenez-Bonafe et al., “Multidrug resistance protein 1 localization in lipid raft domains and prostasomes in prostate cancer cell lines,” Onco. Targets. Ther., vol. 7, pp. 2215–2225, Dec. 2014. [54] J. F. Renzulli et al., “Microvesicle Induction of Prostate Specific Gene Expression in Normal Human Bone Marrow Cells,” J. Urol., vol. 184, no. 5, pp. 2165–2171, Nov. 2010.
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/en-US
dc.sourceTecnoLógicas; Vol. 22 No. 44 (2019); 131-148en-US
dc.sourceTecnoLógicas; Vol. 22 Núm. 44 (2019); 131-148es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectBiomarkersen-US
dc.subjectProstate Canceren-US
dc.subjectExtracellular Vesiclesen-US
dc.subjectProstasomesen-US
dc.subjectProteinsen-US
dc.subjectBiomarcadoreses-ES
dc.subjectcáncer de próstataes-ES
dc.subjectvesículas extracelulareses-ES
dc.subjectprostasomases-ES
dc.subjectproteínases-ES
dc.titleProstasomas: search of biomarkers for the early detection of prostate canceren-US
dc.titleProstasomas: búsqueda de biomarcadores para la detección temprana del cáncer prostáticoes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem