Mostrar el registro sencillo del ítem

Desarrollo de recubrimientos a partir de silicato de zirconio de origen mineral mediante proyección térmica por llama oxiacetilénica para aplicación sobre ladrillos refractarios

dc.creatorCardona, Roger
dc.creatorVargas, Fabio
dc.date2019-01-15
dc.date.accessioned2021-03-18T21:12:23Z
dc.date.available2021-03-18T21:12:23Z
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1185
dc.identifier10.22430/22565337.1185
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/11773
dc.descriptionIn this paper, the experimental development used to flame sprayed coatings from mineral zircon sand (ZrSiO4) and a mixture of ZrSiO4 with 50 wt.% of commercial alumina Oerlikon Metco 105 SFP is presented. The ZrSiO4 sand was milled and sieved to obtain the particle sizes distribution corresponding to -37 +25 m and -25 m. Different parameters of thermal spraying process were simulated with the Jets & Poudres SPCTS software version 2002-2009 and the conditions with the greatest potential to obtain coatings were verified experimentally. The coatings elaborated on silico-aluminous refractory substrates were characterized by SEM and XRD, finding that those deposited from the lower size distribution, using a flame produced with 22 and 70 L / min of acetylene and oxygen respectively, at a spray distance of 10 cm and with a displacement of the gun of 0,275 cm/s and with a rotation of the substrate of 34,57 rpm were those that presented the best structural characteristics. The porosities of coatings sprayed from ZrSiO4 sand and the mixture of ZrSiO4 with Al2O3 were 30,5 ± 6,6% and 20.3 ± 9.2% in area and their Vickers hardness were 3.06 ± 0.70 GPa and 6.0 ± 0.30 GPa, respectively. From the results obtained it was concluded that it is possible to use this mineral as a raw material in the Oxy-acetylene flame thermal spraying process.en-US
dc.descriptionEn el presente trabajo se documenta el desarrollo experimental empleado para obtener mediante proyección térmica por llama oxiacetilénica, recubrimientos a partir de arena de circonio (ZrSiO4) de origen mineral y de una mezcla de ZrSiO4 con 50 % en peso de alúmina comercial referencia Oerlikon-Metco 105 SFP. La arena de ZrSiO4 fue molida y tamizada, con el fin de seleccionar las fracciones de tamaño de partícula -37 +25 μm y -25 μm. Diferentes parámetros de proyección térmica fueron simulados con la herramienta computacional Jets et Poudres SPCTS versión 2002-2009 y las condiciones con mayor potencial para obtener recubrimientos fueron verificadas experimentalmente. Los recubrimientos elaborados sobre sustratos refractarios silico-aluminosos fueron caracterizados mediante MEB y DRX, encontrando que aquellos depositados a partir de la fracción de tamaño más fina, utilizando una llama producida con 22 y 70 L/min de acetileno y oxígeno respectivamente, a una distancia de proyección de 10 cm y con una velocidad de desplazamiento de la antorcha de 0,275 cm/s y con una rotación de los sustratos de 34,57 rpm fueron los que presentaron las mejores características estructurales. La porosidad de los recubrimientos fabricados a partir de la arena de circonio y de la mezcla ZrSiO4 con alúmina fueron de 30,5 ± 6,6% y 20,3 ± 9,2% en área y su dureza fue de 3.06±0.70 GPa y 6.0±0.30 GPa, respectivamente. A partir de los resultados obtenidos se concluye que es posible la utilización de este mineral como materia prima en el proceso de proyección térmica oxiacetilénica.es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.formattext/xml
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1185/1174
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1185/1228
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1185/1411
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1185/1877
dc.relation/*ref*/L. Pawłowski, “Strategic oxides for thermal spraying: problems of availability and evolution of prices,” Surf. Coatings Technol., vol. 220, pp. 14–19, Apr. 2013. [2] J. L. Xu and K. A. Khor, “Plasma spraying for thermal barrier coatings: processes and applications,” in Thermal Barrier Coatings, Elsevier, 2011, pp. 99–114. [3] E. Restrepo, F. Vargas, M. López, R. Cardona, and G. Duarte, “Elaboración de recubrimientos cerámicos mediante proyección térmica por combustión a partir de residuos sólidos industriales,” Matéria (Rio Janeiro), vol. 17, no. 4, pp. 1176–1185, 2012. [4] G. Peña-Rodríguez, H. Dulce-Moreno, J. Daza-Ramírez, S. Orozco-Hernández, and F. Vargas-Galvis, “Mechanical and tribological behavior of red clay ceramic tiles coated with fly ash powders by thermal spraying technique,” J. Phys. Conf. Ser., vol. 792, no. 1, p. 012026, Jan. 2017. [5] E. Cadavid et al., “Elaboración de recubrimientos cerámicos sobre sustratos refractarios utilizando proyección térmica oxiacetilénica a partir de materias primas no convencionales,” DYNA, vol. 85, no. 205, pp. 338–347, Apr. 2018. [6] J. A. Ober, “Mineral Commodity Summaries,” 2018. [7] A. Vardelle et al., “The 2016 Thermal Spray Roadmap,” J. Therm. Spray Technol., vol. 25, no. 8, pp. 1376–1440, Dec. 2016. [8] ASTM D854 - 14, “Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer,” 2014. [Online]. Available: https://www.astm.org/Standards/D854. [9] ASTM E11 - 17, “Standard Specification for Woven Wire Test Sieve Cloth and Test Sieves,” 2017. [Online]. Available: https://www.astm.org/Standards/E11.htm. [10] F. Vargas et al., “Solid-state synthesis of mullite from spent catalysts for manufacturing refractory brick coatings,” Ceram. Int., vol. 44, no. 4, pp. 3556–3562, Mar. 2018. [11] E. Cadavid, C. Parra, and F. Vargas, “Estudio de llamas oxiacetilénica usadas en la proyección térmica,” Rev. Colomb. Mater., no. 9, pp. 15–26, 2016. [12] ASTM E1920 - 03, “Standard Guide for Metallographic Preparation of Thermal Sprayed Coatings,” 2014. [Online]. Available: https://www.astm.org/DATABASE.CART/HISTORICAL/E1920-03.htm. [13] ASTM E2109 - 01, “Standard Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings,” 2014. [Online]. Available: https://www.astm.org/Standards/E2109.htm. [14] ASTM B487 - 85, “Standard Test Method for Measurement of Metal and Oxide Coating Thickness by Microscopical Examination of Cross Section,” 2013. [Online]. Available: https://www.astm.org/Standards/B487.htm. [15] ASTM C1327 - 15, “Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics,” 2015. [Online]. Available: https://www.astm.org/Standards/C1327.htm. [16] D. Densley Tingley and A.C. Serrenho, “Technical handbook on zirconium and zirconium compounds,” Zircon Industry Association, 2015. [17] A. Kaiser, M. Lobert, and R. Telle, “Thermal stability of zircon (ZrSiO4),” J. Eur. Ceram. Soc., vol. 28, no. 11, pp. 2199–2211, Jan. 2008. [18] R. Adams, “Zircon review,” Min. Eng., vol. 63, no. 7, pp. 73–76, 2011. [19] F. Fanicchia, D. A. Axinte, J. Kell, R. McIntyre, G. Brewster, and A. D. Norton, “Combustion Flame Spray of CoNiCrAlY & YSZ coatings,” Surf. Coatings Technol., vol. 315, pp. 546–557, Apr. 2017. [20] M. Chandrasekar, S. Suresh, and A. Chandra Bose, “Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid,” Exp. Therm. Fluid Sci., vol. 34, no. 2, pp. 210–216, Feb. 2010. [21] AZoM, “Alumina - Aluminium Oxide - Al2O3 - A Refractory Ceramic Oxide,” 2001. [Online]. Available: https://www.azom.com/article.aspx?ArticleID=52. [Accessed: 11-May-2018]. [22] Azo Materials, “Properties: Zirconia - ZrO2, Zirconium Dioxide.” [Online]. Available: https://www.azom.com/properties.aspx?ArticleID=133. [Accessed: 15-May-2018]. [23] Z. Chen, X. Wang, A. Atkinson, and N. Brandon, “Spherical indentation of porous ceramics: Elasticity and hardness,” J. Eur. Ceram. Soc., vol. 36, no. 6, pp. 1435–1445, May 2016. [24] G. Di Girolamo, C. Blasi, A. Brentari, and M. Schioppa, “Microstructural, mechanical and thermal characteristics of zirconia-based thermal barrier coatings deposited by plasma spraying,” Ceram. Int., vol. 41, no. 9, pp. 11776–11785, Nov. 2015. [25] K. A. Habib, J. J. Saura, C. Ferrer, M. S. Damra, E. Giménez, and L. Cabedo, “Comparison of flame sprayed Al2O3/TiO2 coatings: Their microstructure, mechanical properties and tribology behavior,” Surf. Coatings Technol., vol. 201, no. 3–4, pp. 1436–1443, Oct. 2006. [26] C. P. Espinosa, “Etude du comportement élastique et plastique de revêtements élaborés par projection plasma : Mise au point d’une méthode de caractérisation des propriétés mécaniques par perforation et comparaison avec les propriétés obtenues par indentation,” Université de Limoges, 2016.
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/en-US
dc.sourceTecnoLógicas; Vol. 22 No. 44 (2019); 97-110en-US
dc.sourceTecnoLógicas; Vol. 22 Núm. 44 (2019); 97-110es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectZircon sanden-US
dc.subjectAluminaen-US
dc.subjectAlternative Raw Materialsen-US
dc.subjectZirconiaen-US
dc.subjectflame spraying processen-US
dc.subjectSilicato de zirconioes-ES
dc.subjectproyección térmica por llamaes-ES
dc.subjectalúminaes-ES
dc.subjectmaterias primas alternativases-ES
dc.titleDevelopment of coatings from zircon sand by oxyacetilene flame spraying for application on refractory bricksen-US
dc.titleDesarrollo de recubrimientos a partir de silicato de zirconio de origen mineral mediante proyección térmica por llama oxiacetilénica para aplicación sobre ladrillos refractarioses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem