Mostrar el registro sencillo del ítem

Efectos de los métodos de molienda en la síntesis de polvos de Niobato de Sodio y Potasio por mezcla de óxidos

dc.creatorQuintero, María C.
dc.creatorRincón, Miryam
dc.creatorOsorio-Guillén, Jorge M.
dc.creatorLópez, Diana
dc.creatorLondoño-Badillo, Fernando Andrés
dc.date2019-09-20
dc.date.accessioned2021-03-18T21:12:26Z
dc.date.available2021-03-18T21:12:26Z
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1269
dc.identifier10.22430/22565337.1269
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/11789
dc.descriptionPiezoelectric materials are widely used in electronic devices and, traditionally, various lead-based materials have been implemented in such applications. However, because of the damage caused by lead, other materials with similar characteristics that do not cause a negative impact on human health and the environment have been developed. A material with those characteristics is potassium-sodium niobite K0.5Na0.5 Nbo3. In this study, we investigate the thermogravimetric, structural, and microstructural properties of powders of such system obtained through oxide mixing with the aim of establishing the effect and efficiency of grinding (using a horizontal and a planetary ball mill grinder) on the production of the final material. It was determined that horizontal grinding and calcination at 900°C create the optimal conditions for obtaining K0.5Na0.5 Nbo3 powders, by oxide mixing, with the adequate structure and microstructure to continue the densification and/or doping processes.en-US
dc.descriptionLos materiales piezoeléctricos son ampliamente utilizados en dispositivos electrónicos. Tradicionalmente, para tales aplicaciones, se han utilizado diversos materiales a base de plomo; sin embargo, debido al daño causado por este elemento, se han desarrollado materias primas con características similares que no causen un impacto negativo a la sociedad o al medio ambiente. Un material con estas características es el niobato de potasio y sodio K0.5Na0.5 Nbo3. En este artículo, se realizaron análisis termogravimétricos, estructurales y microestructurales para los polvos del sistema K0.5Na0.5 Nbo3 obtenidos mediante mezcla de óxido, con el objetivo de determinar el efecto y la eficiencia de la molienda utilizando molinos de bolas, planetario y horizontal en la etapa de mezcla de los reactivos, para la producción del polvo final. Se determinó que el uso de la molienda horizontal y la calcinación a 900 °C crean las condiciones óptimas para obtener polvos  con una estructura y microestructura adecuadas para continuar los procesos de densificación y/o dopaje.es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.formattext/html
dc.languageeng
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1269/1330
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1269/1442
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1269/1457
dc.relation/*ref*/J.-F. Li, K. Wang, F.-Y. Zhu, L.-Q. Cheng, and F.-Z. Yao, “(K,Na)NbO 3 -Based Lead-Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges,” J. Am. Ceram. Soc., vol. 96, no. 12, pp. 3677–3696, Dec. 2013. https://doi.org/10.1111/jace.12715 [2] G. H. Khorrami, A. Kompany, and A. Khorsand Zak, “Structural and optical properties of (K,Na)NbO3 nanoparticles synthesized by a modified sol–gel method using starch media,” Adv. Powder Technol., vol. 26, no. 1, pp. 113–118, Jan. 2015. https://doi.org/10.1016/j.apt.2014.08.013 [3] T. R. Shrout and S. J. Zhang, “Lead-free piezoelectric ceramics: Alternatives for PZT?,” J. Electroceramics, vol. 19, no. 1, pp. 113–126, Sep. 2007. https://doi.org/10.1007/s10832-007-9047-0 [4] A. D. Woolf, R. Goldman, and D. C. Bellinger, “Update on the Clinical Management of Childhood Lead Poisoning,” Pediatr. Clin. North Am., vol. 54, no. 2, pp. 271–294, Apr. 2007. https://doi.org/10.1016/j.pcl.2007.01.008 [5] M. D. Maeder, D. Damjanovic, and N. Setter, “Lead Free Piezoelectric Materials,” J. Electroceramics, vol. 13, no. 1–3, pp. 385–392, Jul. 2004. https://doi.org/10.1007/s10832-004-5130-y [6] F. Rubio-Marcos, P. Marchet, T. Merle-Méjean, and J. F. Fernandez, “Role of sintering time, crystalline phases and symmetry in the piezoelectric properties of lead-free KNN-modified ceramics,” Mater. Chem. Phys., vol. 123, no. 1, pp. 91–97, Sep. 2010. https://doi.org/10.1016/j.matchemphys.2010.03.065 [7] H.-C. Thong, C. Zhao, Z.-X. Zhu, X. Chen, J.-F. Li, and K. Wang, “The impact of chemical heterogeneity in lead-free (K, Na)NbO3 piezoelectric perovskite: Ferroelectric phase coexistence,” Acta Mater., vol. 166, pp. 551–559, Mar. 2019. https://doi.org/10.1016/j.actamat.2019.01.012 [8] J.-F. Li, K. Wang, B.-P. Zhang, and L.-M. Zhang, “Ferroelectric and Piezoelectric Properties of Fine-Grained Na0.5K0.5NbO3 Lead-Free Piezoelectric Ceramics Prepared by Spark Plasma Sintering,” J. Am. Ceram. Soc., vol. 89, no. 2, pp. 706–709, Feb. 2006. https://doi.org/10.1111/j.1551-2916.2005.00743.x [9] R. E. JAEGER and L. EGERTON, “Hot Pressing of Potassium-Sodium Niobates,” J. Am. Ceram. Soc., vol. 45, no. 5, pp. 209–213, May 1962. https://doi.org/10.1111/j.1151-2916.1962.tb11127.x [10] E. D. Politova et al., “Processing and characterization of lead-free ceramics on the base of sodium–potassium niobate,” J. Adv. Dielectr., vol. 08, no. 01, p. 1850004, Feb. 2018. https://doi.org/10.1142/S2010135X18500042 [11] S.-H. Hong and D.-Y. Kim, “Effect of Liquid Content on the Abnormal Grain Growth of Alumina,” J. Am. Ceram. Soc., vol. 84, no. 7, pp. 1597–1600, Dec. 2004. https://doi.org/10.1111/j.1151-2916.2001.tb00883.x [12] B. Chen et al., “High-efficiency synthesis of high-performance K0.5Na0.5NbO3 ceramics,” Powder Technol., vol. 346, pp. 248–255, Mar. 2019. https://doi.org/10.1016/j.powtec.2019.01.039 [13] C. Frances, N. Le Bolay, K. Belaroui, and M. N. Pons, “Particle morphology of ground gibbsite in different grinding environments,” Int. J. Miner. Process., vol. 61, no. 1, pp. 41–56, Jan. 2001. https://doi.org/10.1016/S0301-7516(00)00025-9 [14] I.-W. Chen and R. Riedel, Ceramics Science and Technology. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. https://doi.org/10.1002/9783527631940 [15] I. Seo, C.-R. Lee, and J.-K. Kim, “Zr doping effect with low-cost solid-state reaction method to synthesize submicron Li 4 Ti 5 O 12 anode material,” J. Phys. Chem. Solids, vol. 108, pp. 25–29, Sep. 2017. https://doi.org/10.1016/j.jpcs.2017.04.011 [16] N. Chaiyo, B. Boonchom, and N. Vittayakorn, “Solid-state reaction synthesis of sodium niobate (NaNbO3) powder at low temperature,” J. Mater. Sci., vol. 45, no. 6, pp. 1443–1447, Mar. 2010. https://doi.org/10.1007/s10853-009-4098-z [17] A. Kamal, M. A. Rafiq, M. N. Rafiq, M. Usman, M. Waqar, and M. S. Anwar, “Structural and impedance spectroscopic studies of CuO-doped (K0.5Na0.5Nb0.995Mn0.005O3) lead-free piezoelectric ceramics,” Appl. Phys. A, vol. 122, no. 12, p. 1037, Dec. 2016. https://doi.org/10.1007/s00339-016-0564-z [18] R. Zuo, J. Rodel, R. Chen, and L. Li, “Sintering and Electrical Properties of Lead-Free Na0.5K0.5NbO3 Piezoelectric Ceramics,” J. Am. Ceram. Soc., vol. 89, no. 6, pp. 2010–2015, Jun. 2006. https://doi.org/10.1111/j.1551-2916.2006.00991.x [19] N. Kumada, T. Kyoda, Y. Yonesaki, T. Takei, and N. Kinomura, “Preparation of KNbO3 by hydrothermal reaction,” Mater. Res. Bull., vol. 42, no. 10, pp. 1856–1862, Oct. 2007. https://doi.org/10.1016/j.materresbull.2006.11.045 [20] F. Rubio-Marcos, J. J. Romero, and J. F. Fernandez, “Effect of the temperature on the synthesis of (K,Na)NbO3-modified nanoparticles by a solid state reaction route,” J. Nanoparticle Res., vol. 12, no. 7, pp. 2495–2502, Sep. 2010. https://doi.org/10.1007/s11051-009-9817-5 [21] C. Wattanawikkam, S. Chootin, and T. Bongkarn, “Crystal Structure, Microstructure, Dielectric and Piezoelectric Properties of Lead-Free KNN Ceramics Fabricated via Combustion Method,” Ferroelectrics, vol. 473, no. 1, pp. 24–33, Dec. 2014. https://doi.org/10.1080/00150193.2014.974438
dc.rightsCopyright (c) 2019 TecnoLógicasen-US
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0en-US
dc.sourceTecnoLógicas; Vol. 22 No. 46 (2019); 15-23en-US
dc.sourceTecnoLógicas; Vol. 22 Núm. 46 (2019); 15-23es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectPotassium-sodium Niobateen-US
dc.subjectoxide mixtureen-US
dc.subjectlead-freeen-US
dc.subjectNiobato de sodio y potasioes-ES
dc.subjectmezcla de óxidoses-ES
dc.subjectlibre de plomoes-ES
dc.titleGrinding methods effects on the synthesis of Potassium-Sodium Niobate powders by oxide mixingen-US
dc.titleEfectos de los métodos de molienda en la síntesis de polvos de Niobato de Sodio y Potasio por mezcla de óxidoses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem