Mostrar el registro sencillo del ítem

Ciclo de vida y curvas en s aplicadas al cultivo de amaranto (Amaranthus spp.)

dc.creatorGarcía-Parra, Miguel A.
dc.creatorDe la Cruz-Cruz, Héctor A.
dc.creatorPlazas-Leguizamón, Nubia Z.
dc.date2019-09-20
dc.date.accessioned2021-03-18T21:12:27Z
dc.date.available2021-03-18T21:12:27Z
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1287
dc.identifier10.22430/22565337.1287
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/11792
dc.descriptionIn order to evaluate the research developed around the ecophysiology and the food potential of amaranth seeds, a process of technological surveillance was done through the life cycle of the bibliographic production, obtained from documents published in the database, was studied. Scopus, through S-curves in relation to research aimed at primary production, the interaction with climatic conditions and their agro-industrial potential. The information was analyzed using the Sigmaplot statistical package, and the execution of 13 models together with the application of statistical parameters such as the adjusted R2 in relation to time (t), significance (P) and independence of Durbin Watson, allowed calculating the inflection point. This occurred between 2014 and 2038, according to the series of data of articles for the cultivation of amaranth; from 2017 to 2024 for amaranth as food; and between 2017 to 2018 for the amaranth climate; which indicates that in each of the cases, the life cycle is in the incoming, key and mature phase, respectively, and together with the keywords associated with the search equations, they show the agro-industrial interest, based on academic, scientific approaches and innovation, to strengthen research lines, high-level projects and spin-off creation.en-US
dc.descriptionCon el objetivo de evaluar las investigaciones desarrolladas en torno a la ecofisiología y el potencial alimentario de las semillas de amaranto, se realizó un proceso de vigilancia tecnológica a través del estudió del ciclo de vida de la producción bibliográfica, obtenida de documentos publicados en la base de datos Scopus, a través de curvas en S en relación con investigaciones encaminadas a la producción primaria, la interacción con las condiciones climáticas y su potencial agroindustrial. La información se analizó utilizando el paquete estadístico Sigmaplot, y la ejecución de 13 modelos junto con la aplicación de parámetros estadísticos como el R2 ajustado en relación al tiempo (t), la significancia (P) y la independencia de Durbin Watson, permitió calcular el punto de inflexión. Este se dio entre 2014 y 2038, según la serie de datos de artículos para el cultivo de amaranto; de 2017 a 2024 para el amaranto como alimento; y entre 2017 a 2018 para el clima de amaranto; lo que indica que en cada uno de los casos, el ciclo de vida se encuentra en fase entrante, clave y madura respectivamente y junto con las palabras clave asociadas a las ecuaciones de búsqueda, evidencian el interés agroindustrial, a partir de enfoques académicos, científicos y de innovación, para el fortalecimiento de líneas de investigación, proyectos de alto nivel y creación de spin-off.es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.formattext/html
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1287/1341
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1287/1453
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1287/1478
dc.relation/*ref*/J. B. Padilla, J. W. Zartha, V. T. Álvarez, and G. L. Orozco, “Vigilancia Tecnológica para la Identificación de Innovaciones en Subproductos de la Curtición,” Inf. tecnológica, vol. 29, no. 4, pp. 127–142, Aug. 2018. https://doi.org/10.4067/S0718-07642018000400127 [2] A. Escobar and J. W. Zartha, “Application of the Technology Life Cycle and S-Curves to the ‘Brain Drain’ Area of Knowledge,” Indian J. Sci. Technol., vol. 10, no. 43, pp. 1–8, Nov. 2017. https://doi.org/10.17485/ijst/2017/v10i43/116247 [3] A. M. McGahan, N. Argyres, and J. A. C. Baum, “Context, technology and strategy: forging new perspectives on the industry life cycle,” in Business Strategy over the Industry Lifecycle, vol. 21, Australia, Emerald Group Publishing Limited 2004. https://doi.org/10.1016/S0742-3322(04)21015-4 [4] R. Siedlecki, D. Papla, and A. Bem, “A logistic law of growth as a base for methods of company’s life cycle phases forecasting,” Proc. Rom. Acad., pp. 141–146, 2018. https://acad.ro/sectii2002/proceedings/doc2018-1s/continut/141-146.pdf [5] J. Overall and S. Wise, “An S-Curve Model of the Start-Up Life Cycle Through the Lens of Customer Development,” J. Priv. Equity, vol. 18, no. 2, pp. 23–34, Feb. 2015. https://doi.org/10.3905/jpe.2015.18.2.023 [6] J. He, S. Tanaka, X. Wen, and J. Kamath, “Rapid S-Curve Update Using Ensemble Variance Analysis with Model Validation,” in SPE Western Regional Meeting, Apr. 2017. https://doi.org/10.2118/185630-MS [7] M. A. Schilling and M. Esmundo, “Technology S-curves in renewable energy alternatives: Analysis and implications for industry and government,” Energy Policy, vol. 37, no. 5, pp. 1767–1781, May 2009. https://doi.org/10.1016/j.enpol.2009.01.004 [8] Z. Hojjati Tavassoli, S. Iranmanesh, and A. Tavassoli Hojjati, “Designing a Framework to Improve Time Series Data of Construction Projects: Application of a Simulation Model and Singular Spectrum Analysis,” Algorithms, vol. 9, no. 3, p. 45, Jul. 2016. https://doi.org/10.3390/a9030045 [9] C. A. Grajales-López et al., “Vigilancia Tecnológica y Análisis del Ciclo de Vida de la Tecnología: Revisión de herramientas para el diagnóstico empresarial y la aplicación del ciclo de vida del producto en el sector turismo,” Espacios, vol. 37, no. 36, Aug. 2016. http://www.revistaespacios.com/a16v37n36/16373619.html [10] J. W. Zartha, F. P. Marro, B. Arango, F. M. Vélez, and A. F. Avalos, “S ­ Curve analysis and technology life cycle . Application in series of data of articles and patents,” Espacios, vol. 37, no. 7, Nov. 2016. https://www.revistaespacios.com/a16v37n07/16370719.html [11] E. G. Tovar-Pérez, A. Lugo-Radillo, and S. Aguilera-Aguirre, “Amaranth grain as a potential source of biologically active peptides: a review of their identification, production, bioactivity, and characterization,” Food Rev. Int., vol. 35, no. 3, pp. 221–245, Oct. 2019. https://doi.org/10.1080/87559129.2018.1514625 [12] M. O. Jimoh, A. J. Afolayan, and F. B. Lewu, “Suitability of Amaranthus species for alleviating human dietary deficiencies,” South African J. Bot., vol. 115, pp. 65–73, Mar. 2018. https://doi.org/10.1016/j.sajb.2018.01.004 [13] D. F. Roa, R. I. Baeza, and M. P. Tolaba, “Effect of ball milling energy on rheological and thermal properties of amaranth flour,” J. Food Sci. Technol., vol. 52, no. 12, pp. 8389–8394, Dec. 2015. https://doi.org/10.1007/s13197-015-1976-z [14] A. Svirskis, “Investigation of amaranth cultivation and utilisation in Lithuania,” Agron. Res., vol. 1, no. 2, pp. 253–264, 2003. https://agronomy.emu.ee/vol012/Svirskis.pdf [15] F. R. Alemayehu, M. A. Bendevis, and S.-E. Jacobsen, “The Potential for Utilizing the Seed Crop Amaranth ( Amaranthus spp.) in East Africa as an Alternative Crop to Support Food Security and Climate Change Mitigation,” J. Agron. Crop Sci., vol. 201, no. 5, pp. 321–329, Oct. 2015. https://doi.org/10.1111/jac.12108 [16] A. Ebert, “Potential of Underutilized Traditional Vegetables and Legume Crops to Contribute to Food and Nutritional Security, Income and More Sustainable Production Systems,” Sustainability, vol. 6, no. 1, pp. 319–335, Jan. 2014. https://doi.org/10.3390/su6010319 [17] Xarvier, J. B.; Souza, D. C. de; Souza, L. C. de; Guerra, T. S.; Resende, L. V.; Pereira, J. “Nutritive potential of amaranth weed grains,” African J. Agric. Res., vol. 13, no. 22, pp. 1140–1147, May 2018. https://doi.org/10.5897/AJAR2018.13151 [18] F. Bavec and S. . Mlakar, “Effects of soil and climatic conditions on emergence of grain amaranths,” Eur. J. Agron., vol. 17, no. 2, pp. 93–103, Sep. 2002. https://doi.org/10.1016/S1161-0301(01)00144-7 [19] M. J. Kabir, M. Alauddin, and S. Crimp, “Farm-level adaptation to climate change in Western Bangladesh: An analysis of adaptation dynamics, profitability and risks,” Land use policy, vol. 64, pp. 212–224, May. 2017. https://doi.org/10.1016/j.landusepol.2017.02.026 [20] R. Hernández Zarta et al., “Vigilancia tecnológica y análisis del ciclo de vida de la tecnología: evaluación del potencial comercial de un prototipo de guantes biodegradables a partir de almidón termoplástico de yuca,” Espacios, vol. 37, no. 13, Mar. 2016. https://www.revistaespacios.com/a16v37n13/ 6371328.html [21] J. W. Zartha, D. F. Zuluaga, J. C. Palacio, and J. M. Montes, “Ciclo de Vida de Tecnologías y Curvas en S Aplicadas en Subproductos de la Agroindustria Piscícola,” Inf. tecnológica, vol. 28, no. 2, pp. 105–114, Apr. 2017. https://doi.org/10.4067/S0718-07642017000200012 [22] D. J. Spaunhorst, P. Devkota, W. G. Johnson, R. J. Smeda, C. J. Meyer, and J. K. Norsworthy, “Phenology of Five Palmer amaranth ( Amaranthus palmeri ) Populations Grown in Northern Indiana and Arkansas,” Weed Sci., vol. 66, no. 4, pp. 457–469, Mar. 2018. https://doi.org/10.1017/wsc.2018.12 [23] E. J. Kistner and J. L. Hatfield, “Potential Geographic Distribution of Palmer Amaranth under Current and Future Climates,” ael, vol. 3, no. 1, pp. 1–5, Apr. 2018. https://doi.org/10.2134/ael2017.12.0044 [24] J. López-Sánchez, E. Ponce-Alquicira, R. Pedroza-Islas, A. de la Peña-Díaz, and J. Soriano-Santos, “Effects of heat and pH treatments and in vitro digestion on the biological activity of protein hydrolysates of Amaranthus hypochondriacus L. grain,” J. Food Sci. Technol., vol. 53, no. 12, pp. 4298–4307, Dec. 2016. https://doi.org/10.1007/s13197-016-2428-0 [25] D. N. López, M. Galante, M. Robson, V. Boeris, and D. Spelzini, “Amaranth, quinoa and chia protein isolates: Physicochemical and structural properties,” Int. J. Biol. Macromol., vol. 109, no. 1, pp. 152–159, Apr. 2018. https://doi.org/10.1016/j.ijbiomac.2017.12.080 [26] M. G. Schryver, N. Soltani, D. C. Hooker, D. E. Robinson, P. J. Tranel, and P. H. Sikkema, “Control of Glyphosate-Resistant Common Waterhemp ( Amaranthus tuberculatus var. rudis ) in Soybean in Ontario,” Weed Technol., vol. 31, no. 6, pp. 811–821, Dec. 2017. https://doi.org/10.1017/wet.2017.50 [27] J. Ye and B. Wen, “Seed germination in relation to the invasiveness in spiny amaranth and edible amaranth in Xishuangbanna, SW China,” PLoS One, vol. 12, no. 4, p. e0175948, Apr. 2017. https://doi.org/10.1371/journal.pone.0175948 [28] R. D. Briscoe Runquist, T. Lake, P. Tiffin, and D. A. Moeller, “Species distribution models throughout the invasion history of Palmer amaranth predict regions at risk of future invasion and reveal challenges with modeling rapidly shifting geographic ranges,” Sci. Rep., vol. 9, no. 1, p. 2426, Feb. 2019. https://doi.org/10.1038/s41598-018-38054-9 [29] N. E. Korres et al., “Cultivars to face climate change effects on crops and weeds: a review,” Agron. Sustain. Dev., vol. 36, no. 1, p. 12, Mar. 2016. https://doi.org/10.1007/s13593-016-0350-5 [30] C. Pulvento, A. Lavini, M. Riccardi, R. D’Andria, and R. Ragab, “Assessing Amaranth Adaptability in a Mediterranean Area of South Italy under Different Climatic Scenarios,” Irrig. Drain., vol. 64, no. 1, pp. 50–58, Feb. 2015. https://doi.org/10.1002/ird.1906 [31] M. Á. García-Parra and N. Z. Plazas-Leguizamón, “Análisis del ciclo de vida de las publicaciones sobre la producción de quinua (Chenopodium quinoa Willd), a través de curvas en S,” Rev. Investig. Desarro. E Innovación, vol. 9, no. 2, pp. 379–391, Feb. 2019. https://doi.org/10.19053/20278306.v9.n2.2019.9189 [32] M. Taylor and A. Taylor, “The technology life cycle: Conceptualization and managerial implications,” Int. J. Prod. Econ., vol. 140, no. 1, pp. 541–553, Nov. 2012. https://doi.org/10.1016/j.ijpe.2012.07.006 [33] K. Kalasin, A. Cuervo‐Cazurra, and R. Ramamurti, “State ownership and international expansion: The S‐curve relationship,” Glob. Strateg. J., p. gsj.1339, Apr. 2019. https://doi.org/10.1002/gsj.1339 [34] B. Pedersen, L. S. Kalinowski, and B. O. Eggum, “The nutritive value of amaranth grain (Amaranthus caudatus),” Qual. Plant. Plant Foods Hum. Nutr., vol. 36, no. 4, pp. 309–324, Dec. 1987. https://doi.org/10.1007/BF01892352 [35] O. L. Torres Vargas, A. J. García Salcedo, and H. Ariza Calderón, “Physical-chemical characterization of quinoa (Chenopodium quinoa Willd.), amaranth (Amaranthus caudatus L.), and chia (Salvia hispanica L.) flours and seeds,” Acta Agronómica, vol. 67, no. 2, pp. 215–222, Apr. 2018. https://doi.org/10.15446/acag.v67n2.63666 [36] D. Bazile, S.-E. Jacobsen, and A. Verniau, “The Global Expansion of Quinoa: Trends and Limits,” Front. Plant Sci., vol. 7, no. May, pp. 1–6, May 2016. https://doi.org/10.3389/fpls.2016.00622 [37] A. Shukla et al., “Untapped amaranth (Amaranthus spp.) genetic diversity with potential for nutritional enhancement,” Genet. Resour. Crop Evol., vol. 65, no. 1, pp. 243–253, jun. 2018. https://doi.org/10.1007/s10722-017-0526-0 [38] S. Aguilar, A. F. Ávalos, D. P. Giraldo, S. Quintero, J. W. Zartha, and F. B. Cortés, “La Curva en S como Herramienta para la Medición de los Ciclos de Vida de Productos,” J. Technol. Manag. Innov., vol. 7, no. 1, pp. 238–248, Mar. 2012. https://doi.org/10.4067/S0718-27242012000100016 [39] F. F. Dinssa, R.-Y. Yang, D. R. Ledesma, O. Mbwambo, and P. Hanson, “Effect of leaf harvest on grain yield and nutrient content of diverse amaranth entries,” Sci. Hortic. (Amsterdam)., vol. 236, no. 16, pp. 146–157, Jun. 2018. https://doi.org/10.1016/j.scienta.2018.03.028 [40] C. Silva-SáncheZ, J. González-Castañeda, A. De León-Rodríguez, and A. P. B. De la Rosa,, “Functional and Rheological Properties of Amaranth Albumins Extracted From Two Mexican Varieties,” Plant Foods Hum. Nutr., vol. 59, no. 4, pp. 169–174, Oct. 2004. https://doi.org/10.1007/s11130-004-0021-6 [41] P. S. Chahal et al., “Control of Photosystem II– and 4-Hydroxyphenylpyruvate Dioxygenase Inhibitor–Resistant Palmer Amaranth ( Amaranthus palmeri ) in Conventional Corn,” Weed Technol., vol. 32, no. 3, pp. 326–335, Jun. 2018. https://doi.org/10.1017/wet.2017.111 [42] A. Rastogi and S. Shukla, “Amaranth: A New Millennium Crop of Nutraceutical Values,” Crit. Rev. Food Sci. Nutr., vol. 53, no. 2, pp. 109–125, Jan. 2012. https://doi.org/10.1080/10408398.2010.517876 [43] F. D. Castaño, “The sunflower crop in Argentina: past, present and potential future,” OCL - Oilseeds fats, Crop. Lipids, vol. 25, no. 1, p. D105, Jan. 2018. https://doi.org/10.1051/ocl/2017043 [44] F. Cornejo, G. Novillo, E. Villacrés, and C. M. Rosell, “Evaluation of the physicochemical and nutritional changes in two amaranth species (Amaranthus quitensis and Amaranthus caudatus) after germination,” Food Res. Int., vol. 121, pp. 933–939, Jul. 2019. https://doi.org/10.1016/j.foodres.2019.01.022 [45] V. Sarabi, A. Ghanbari, M. H. R. Mohassel, M. N. Mahallati, and M. Rastgoo, “Broadleaf Weed Control in Corn (Zea mays L.) with Sulfonylurea Herbicides Tank-mixed with 2,4-D + MCPA,” Agron. J., vol. 110, no. 2, p. 638-645, Mar. 2018. https://doi.org/10.2134/agronj2017.07.0419 [46] E. Rojas-Rivas, A. Espinoza-Ortega, H. Thomé-Ortiz, and S. Moctezuma-Pérez, “Consumers’ perception of amaranth in Mexico,” Br. Food J., vol. 121, no. 6, pp. 1190–1202, Jun. 2019. https://doi.org/10.1108/BFJ-05-2018-0334 [47] W. Carrillo, R. Vilcacundo, and C. Carpio, “Compuestos bioactivos derivados de amaranto y quinua,” Actual. en Nutr., vol. 16, no. 1, pp. 18–22, Mar. 2015. http://www.revistasan.org.ar/pdf_files/trabajos/vol_16/num_1/RSAN_16_1_18.pdf [48] S. Navruz-Varli and N. Sanlier, “Nutritional and health benefits of quinoa ( Chenopodium quinoa Willd.),” J. Cereal Sci., vol. 69, pp. 371–376, May 2016. https://doi.org/10.1016/j.jcs.2016.05.004 [49] N. Jamalluddin, F. J. Massawe, and R. C. Symonds, “Transpiration efficiency of Amaranth ( Amaranthus sp.) in response to drought stress,” J. Hortic. Sci. Biotechnol., vol. 94, no. 4, pp. 448–459, Oct. 2019. https://doi.org/10.1080/14620316.2018.1537725 [50] J. Ochieng, P. Schreinemachers, M. Ogada, F. F. Dinssa, W. Barnos, and H. Mndiga, “Adoption of improved amaranth varieties and good agricultural practices in East Africa,” Land use policy, vol. 83, pp. 187–194, Apr. 2019. https://doi.org/10.1016/j.landusepol.2019.02.002 [51] M. L. T. Clavijo et al., “Vigilancia tecnológica y análisis del ciclo de vida de la tecnología: técnicas de evaluación de la usabilidad, métricas y herramientas en el sector TICs,” Espacios, vol. 38, no. 22, pp. 28, Dec. 2017. https://www.revistaespacios.com/a17v38n22/a17v38n21p28.pdf
dc.rightsCopyright (c) 2019 TecnoLógicasen-US
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0en-US
dc.sourceTecnoLógicas; Vol. 22 No. 46 (2019); 61-76en-US
dc.sourceTecnoLógicas; Vol. 22 Núm. 46 (2019); 61-76es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectAmaranthen-US
dc.subjectvegetable proteinen-US
dc.subjectinflection pointen-US
dc.subjecttechnological surveillanceen-US
dc.subjectS-curveen-US
dc.subjectAmarantoes-ES
dc.subjectproteína vegetales-ES
dc.subjectpunto de inflexiónes-ES
dc.subjectvigilancia tecnológicaes-ES
dc.subjectcurvas en Ses-ES
dc.titleLife Cycle and S-curves Applied to the Literature on Amaranthus Spp. Cultivationen-US
dc.titleCiclo de vida y curvas en s aplicadas al cultivo de amaranto (Amaranthus spp.)es-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeReview Articleen-US
dc.typeArtículos de revisiónes-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem