Mostrar el registro sencillo del ítem

Estudio de los parámetros de proyección térmica por plasma de blancos de TiO2 usados en magnetrón sputtering

dc.creatorJaramillo-Raquejo, Daniela
dc.creatorPalacio-Espinosa, Claudia Constanza
dc.creatorAgeorges, Hélène
dc.date2020-01-30
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1320
dc.identifier10.22430/22565337.1320
dc.descriptionThe synthesis of thin films by sputtering requires the use of targets, which act as materials from which the coatings are made. This work is focused on the implementation of Atmospheric Plasma Spray (APS) for manufacturing TiO2 targets that can later be used in the deposition of TiO2 coatings by magnetron sputtering. Three commercial TiO2 powders, produced by Oerlikon Metco, were sprayed using different spray parameters to evaluate their effect on the microstructure (percentage of pores and cracks on the cross section) of the obtained TiO2 targets. The targets were characterized by Scanning Electron Microscopy (SEM) and image processing and used in sputtering deposition tests to estimate the deposition rate. The results enabled us to identify the variables with the most significant effect on the targets’ microstructure (in a decreasing order in terms of magnitude of the effect): ratio of plasma generating gases, stand-off distance, carrier gas flow rate, current in the electric arc, and particle size distribution of the raw material. The percentages of microstructural defects found during the tests ranged between 0.41 ± 0.30 % and 6.80 ± 2.03 %, which demonstrates the importance of controlling spray parameters in the manufacture of targets by this technique.en-US
dc.descriptionLa síntesis de películas delgadas por pulverización catódica o sputtering requiere la utilización de blancos o targets, que actúan como los materiales a partir de los cuales se elaboran los recubrimientos. Este trabajo está enfocado en la implementación del proceso de proyección térmica por plasma atmosférico para la fabricación de blancos de TiO2, que posteriormente puedan emplearse en la deposición de recubrimientos de TiO2 por magnetrón sputtering. Se partió de tres polvos de TiO2 comerciales de la marca Oerlikon Metco, los cuales fueron proyectados mediante diferentes parámetros de proyección para evaluar su efecto en la microestructura (porcentaje de poros y grietas en sección transversal) de los blancos de TiO2 obtenidos. Los blancos fueron caracterizados por microscopía electrónica de barrido y procesamiento de imágenes y utilizados en algunas pruebas de deposición sputtering para estimar la tasa de deposición. Los resultados permitieron identificar las variables que tienen un efecto más significativo sobre la microestructura de los blancos. En orden decreciente a la magnitud del efecto, estas variables son: la relación de gases generadores de plasma, la distancia de proyección, el flujo del gas de arrastre, la corriente en el arco eléctrico y la distribución de tamaños de partícula de la materia prima. Los porcentajes de defectos microestructurales encontrados durante la ejecución de las pruebas variaron entre 0.41 ± 0.30 % y 6.80 ± 2.03 %, rango que demuestra la importancia que puede llegar a tener el control de los parámetros de proyección en la fabricación de blancos mediante esta técnica.es-ES
dc.formatapplication/pdf
dc.formattext/html
dc.formattext/xml
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1320/1523
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1320/1609
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1320/1596
dc.relation/*ref*/1] K. Yoshikawa, Y. Yoneda, y K. Koide, “Spray formed aluminum alloys for sputtering targets,” Powder Metall., vol. 43, no. 3, pp. 198, 2000. Disponible en: https://search.proquest.com/openview/f1c1914da5d60226ec2f67b4763705b4/1?pq-origsite=gscholar&cbl=38197
dc.relation/*ref*/Q. Ling et al., “The microstructure, mechanical and electrical properties of Niobium pentoxide-doped Titanium oxide ceramic targets,”en IOP Conf. Ser. Mater. Sci. Eng., vol. 182, pp. 1-7, Qingdao. 2017. https://doi.org/10.1088/1757-899X/182/1/012005
dc.relation/*ref*/J. J. Li, L. F. Hu, F. Z. Li, M. S. Li, y Y. C. Zhou, “Variation of microstructure and composition of the Cr2AlC coating prepared by sputtering at 370 and 500°C,” Surf. Coatings Technol., vol. 204, no. 23, pp. 3838–3845, Aug. 2010. https://doi.org/10.1016/j.surfcoat.2010.04.067
dc.relation/*ref*/G. Haacke, W. E. Mealmaker, y L. A. Siegel, “Sputter deposition and characterization of Cd2SnO4 films,” Thin Solid Films, vol. 55, no. 1, pp. 67–81, Nov. 1978. https://doi.org/10.1016/0040-6090(78)90075-5
dc.relation/*ref*/B. R. Braeckman et al., “High entropy alloy thin films deposited by magnetron sputtering of powder targets,” Thin Solid Films, vol. 580, no.1, pp. 71–76, Apr. 2015. https://doi.org/10.1016/j.tsf.2015.02.070
dc.relation/*ref*/A. F. Jankowski, J. P. Hayes, D. M. Makowiecki, y M. A. McKernan, “Formation of cubic boron nitride by the reactive sputter deposition of boron,” Thin Solid Films, vol. 308–309, pp. 94–100, Oct. 1997. https://doi.org/10.1016/S0040-6090(97)00395-7
dc.relation/*ref*/K. Kutschej, P. H. Mayrhofer, M. Kathrein, P. Polcik, y C. Mitterer, “A new low-friction concept for Ti1−xAlxN based coatings in high-temperature applications,” Surf. Coatings Technol., vol. 188–189, pp. 358–363, Nov. 2004. https://doi.org/10.1016/j.surfcoat.2004.08.022
dc.relation/*ref*/D. Zhong, E. Sutter, J. . Moore, G. G. . Mustoe, E. . Levashov, y J. Disam, “Mechanical properties of Ti–B–C–N coatings deposited by magnetron sputtering,” Thin Solid Films, vol. 398–399, pp. 320–325, Nov. 2001. https://doi.org/10.1016/S0040-6090(01)01344-X
dc.relation/*ref*/D. V. Shtansky et al., “Structure and properties of CaO- and ZrO2-doped TiCxNy coatings for biomedical applications,” Surf. Coatings Technol., vol. 182, no. 1, pp. 101–111, Apr. 2004. https://doi.org/10.1016/S0257-8972(03)00813-2
dc.relation/*ref*/M. Müller, R. B. Heimann, F. Gitzhofer, M. I. Boulos, and K. Schwarz, “Radio frequency plasma processing to produce chromium sputter targets,” J. Therm. Spray Technol., vol. 9, pp. 488–493, Dec. 2000. https://doi.org/10.1007/BF02608551
dc.relation/*ref*/W. Shao, R. Ma, y B. Liu, “Fabrication and properties of ZAO powder, sputtering target materials and the related films,” J. Univ. Sci. Technol. Beijing, Miner. Metall. Mater., vol. 13, no. 4, pp. 346–349, Aug. 2006. https://doi.org/10.1016/S1005-8850(06)60071-6
dc.relation/*ref*/N. Neves et al., “Sintering Behavior of Nano- and Micro-Sized ZnO Powder Targets for rf Magnetron Sputtering Applications,” J. Am. Ceram. Soc., vol. 95, no. 1, pp. 204–210, Jan. 2012. https://doi.org/10.1111/j.1551-2916.2011.04874.x
dc.relation/*ref*/J. L. H. Chau, Y.-H. Chou, S.-H. Wang, and C.-C. Yang, “Preparation of Ag-AZO Nanocomposite Powder Compact for RF Magnetron Sputtering Target Application,” Int. J. Appl. Ceram. Technol., vol. 10, no. 6, pp. 879–886, Nov. 2013. https://doi.org/10.1111/ijac.12017
dc.relation/*ref*/D. Fasquelle et al., “Lanthanum titanate ceramics: Electrical characterizations in large temperature and frequency ranges,” J. Eur. Ceram. Soc., vol. 25, no. 12, pp. 2085–2088, May. 2005. https://doi.org/10.1016/j.jeurceramsoc.2005.03.013
dc.relation/*ref*/Compañía proveedora de equipos y asesorías para la manufactura de Materiales, “The library of manufacturing”, 2016. Disponible en: http://www.thelibraryofmanufacturing.com/
dc.relation/*ref*/Plasmaterials Inc., “Sputtering Targets”, 2018. Disponible en: https://www.plasmaterials.com/products/sputtering-targets/#em
dc.relation/*ref*/R. Bamola, “Thermal spray applications in the solar industry,” Adv. Mater. Process., vol. 168, no. 5, pp. 48–50, May. 2010. Disponible en: https://www.researchgate.net/publication/294391312_Thermal_Spray_Applications_in_the_Solar_Industry
dc.relation/*ref*/Glass Canada magazine, “Thermal spray as a sputter target production method New trends in rotatable target manufacturing for coating applications on glass,” 2009. Disponible en: https://www.glasscanadamag.com/thermal-spray-as-a-sputter-target-production-method-1124/
dc.relation/*ref*/P. L. Fauchais, J. V. R. Heberlein, y M. I. Boulos, Thermal Spray Fundamentals. Springer US, 2014. https://doi.org/10.1007/978-0-387-68991-3
dc.relation/*ref*/R. A. Powell y S. Rossnagel, “Chapter 9 PVD materials and processes,” in Thin Films, vol. 26, A. Press, Ed. Academic Press, 1999. pp. 285–352. https://doi.org/10.1016/S1079-4050(99)80012-X
dc.relation/*ref*/F. Craciun, P. Verardi, M. Dinescu, C. Galassi, y A. Costa, “Growth of piezoelectric thin films with fine grain microstructure by high energy pulsed laser deposition,” Sensors Actuators A Phys., vol. 74, no. 1–3, pp. 35–40, Apr. 1999. https://doi.org/10.1016/S0924-4247(98)00341-0
dc.relation/*ref*/Oerlikon Metco, “Material Product Data Sheet Pure Titanium Thermal Spray Powders,” pp. 1-7, 2019. Disponible en: https://www.oerlikon.com/ecoma/files/DSM-0222.0_Ti-Ti_Alloys.pdf?download=1
dc.relation/*ref*/C. Palacio-Espinosa, “Étude du comportement élastique et plastique de revêtements élaborés par projection thermique : Mise au point d’une méthode de caractérisation des propriétés mécaniques par perforation et comparaison avec les propriétés obtenues par indentation,” (Tesis Doctoral) Université de Limoges, Limoges, 2016. Disponible en: https://pdfs.semanticscholar.org/573e/695c4b1212d2176990caccc7fc3a2f4d5cda.pdf?_ga=2.136668404.530889460.1580223040-157729077.1571259895
dc.relation/*ref*/S. Garcia-Segura, S. Dosta, J. M. Guilemany, y E. Brillas, “Solar photoelectrocatalytic degradation of Acid Orange 7 azo dye using a highly stable TiO2 photoanode synthesized by atmospheric plasma spray,” Appl. Catal. B Environ., vol. 132–133, pp. 142–150, Mar. 2013. https://doi.org/10.1016/j.apcatb.2012.11.037
dc.relation/*ref*/M. Vicent, E. Sánchez, A. Moreno, y R. Moreno, “Preparation of high solids content nano-titania suspensions to obtain spray-dried nanostructured powders for atmospheric plasma spraying,” J. Eur. Ceram. Soc., vol. 32, no. 1, pp. 185–194, Jan. 2012. https://doi.org/10.1016/j.jeurceramsoc.2011.08.007
dc.relation/*ref*/Y.-F. Lin, K.-L. Tung, Y.-S. Tzeng, J.-H. Chen, y K.-S. Chang, “Rapid atmospheric plasma spray coating preparation and photocatalytic activity of macroporous titania nanocrystalline membranes,” J. Memb. Sci., vol. 389, pp. 83–90, Feb. 2012. https://doi.org/10.1016/j.memsci.2011.10.018
dc.relation/*ref*/M. Bozorgtabar, M. Rahimipour, M. Salehi, y M. Jafarpour, “Structure and photocatalytic activity of TiO2 coatings deposited by atmospheric plasma spraying,” Surf. Coatings Technol., vol. 205, no. 2, pp. S229–S231, Jul. 2011. https://doi.org/10.1016/j.surfcoat.2011.03.045
dc.relation/*ref*/M. Zakeri, E. Hasani, y M. Tamizifar, “Mechanical properties of TiO2-hydroxyapatite nanostructured coatings on Ti-6Al-4V substrates by APS method,” Int. J. Miner. Metall. Mater., vol. 20, no. 4, pp. 397-402, Apr. 2013. https://doi.org/10.1007/s12613-013-0742-3
dc.relation/*ref*/ASTM International, “Standard Guide for Metallographic Preparation of Thermal Sprayed Coatings ASTM E1920 - 03(2008),” 2008. Disponible en: http://209.195.157.233/Standards/HISTORICAL/E1920-03R08.htm
dc.relation/*ref*/ASTM International, “E2109-01 Standard Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings”, 2014. Disponible en: https://www.astm.org/Standards/E2109.htm
dc.relation/*ref*/R. Cardona y F. Vargas, “Desarrollo de recubrimientos a partir de silicato de zirconio de origen mineral mediante proyección térmica por llama oxiacetilénica para aplicación sobre ladrillos refractarios,” TecnoLógicas, vol. 22, no. 44, pp. 97-111, Jan. 2019. https://doi.org/10.22430/22565337.1185
dc.relation/*ref*/D. García-Muñoz y F. Vargas-Galvis, “Aislamiento térmico de tuberías de acero que transportan fluidos calientes a partir de recubrimientos elaborados mediante proyección térmica,” TecnoLógicas, vol. 20, no. 40, pp. 53–69, Sep. 2017. https://doi.org/10.22430/22565337.705
dc.relation/*ref*/M. Araque-Pabón, G. Peña-Rodríguez, y F. Vargas-Galvis, “Desempeño mecánico y tribológico de baldosas cerámicas de arcilla roja recubiertas por proyección térmica a partir de alúmina,” TecnoLógicas, vol. 18, no. 35, pp. 125-135, Aug. 2015. https://doi.org/10.22430/22565337.194
dc.relation/*ref*/C. C. Palacio, H. Ageorges, F. Vargas, y A. F. Díaz, “Effect of the mechanical properties on drilling resistance of Al2O3–TiO2 coatings manufactured by atmospheric plasma spraying,” Surf. Coatings Technol., vol. 220, pp. 144–148, Apr. 2013. https://doi.org/10.1016/j.surfcoat.2012.10.075
dc.relation/*ref*/C. Monterrubio-Badillo, H. Ageorges, T. Chartier, J. F. Coudert, y P. Fauchais, “Preparation of LaMnO3 perovskite thin films by suspension plasma spraying for SOFC cathodes,” Surf. Coatings Technol., vol. 200, no. 12–13, pp. 3743–3756, Mar. 2006. https://doi.org/10.1016/j.surfcoat.2005.01.002
dc.relation/*ref*/R. S. Lima y B. R. Marple, “From APS to HVOF spraying of conventional and nanostructured titania feedstock powders : a study on the enhancement of the mechanical properties,” Surf. Coat. Technol., vol. 200, no. 11, pp. 3428–3437, Mar. 2006. https://doi.org/10.1016/j.surfcoat.2004.10.137
dc.rightsCopyright (c) 2020 TecnoLógicasen-US
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0en-US
dc.sourceTecnoLógicas; Vol. 23 No. 47 (2020); 137-157en-US
dc.sourceTecnoLógicas; Vol. 23 Núm. 47 (2020); 137-157es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectAtmospheric Plasma Sprayen-US
dc.subjecttarget manufacturingen-US
dc.subjectsputteringen-US
dc.subjectporosityen-US
dc.subjectrutileen-US
dc.subjectProyección por plasma atmosféricoes-ES
dc.subjectfabricación de blancoses-ES
dc.subjectsputteringes-ES
dc.subjectporosidades-ES
dc.subjectrutiloes-ES
dc.titlePlasma Spray Parameters of TiO2 Targets Used in Magnetron Sputteringen-US
dc.titleEstudio de los parámetros de proyección térmica por plasma de blancos de TiO2 usados en magnetrón sputteringes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem