Mostrar el registro sencillo del ítem

Análisis comparativo de algoritmos en paralelo de mapeo de actividad cerebral para modelos cerebrales de alta resolución

dc.creatorMolina-Machado , Cristhian D.
dc.creatorCuartas , Ernesto
dc.creatorMartínez-Vargas, Juan D.
dc.creatorGiraldo , Eduardo
dc.date2019-09-20
dc.date.accessioned2021-03-18T21:12:28Z
dc.date.available2021-03-18T21:12:28Z
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1344
dc.identifier10.22430/22565337.1344
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/11800
dc.descriptionThis paper proposes a comparative analysis between regular and parallel versions of FISTA and Tikhonov-like optimizations for solving the EEG brain mapping problem. Such comparison is performed in terms of computational time reduction and estimation error achieved by the parallelized methods. Two brain models (high- and low-resolution) are used to compare the algorithms. As a result, it can be seen that, if the number of parallel processes increases, computational time decreases significantly for all the head models used in this work, without compromising the reconstruction quality. In addition, it can be concluded that the use of a high-resolution head model produces an improvement in any source reconstruction method in terms of spatial resolution.  en-US
dc.descriptionEn este artículo se propone un análisis comparativo entre versiones regulares y en paralelo de métodos de optimización FISTA y Tikhonov, para resolver el problema de mapeo cerebral a partir de EEG. La comparación se realiza en términos de la reducción del tiempo computacional y el error de estimación obtenido por los métodos paralelizados. Dos modelos de cabeza con alta y baja resolución son usados para la comparación de los algoritmos. Como resultado se puede ver que, si el número de procesos en paralelo se incrementa, el tiempo computacional disminuye significativamente para todos los modelos de cabeza, sin comprometer la calidad de la reconstrucción. Adicionalmente, se puede concluir que el uso de un modelo de cabeza de alta resolución resulta en una mejora de cualquier método de reconstrucción en términos de la resolución espacial.es-ES
dc.formatapplication/pdf
dc.formattext/html
dc.formattext/xml
dc.languageeng
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1344/1370
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1344/1435
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1344/1452
dc.relation/*ref*/C. M. Michel and D. Brunet, “EEG Source Imaging: A Practical Review of the Analysis Steps,” Front. Neurol., vol. 10, pp.1-18, Apr. 2019. https://doi.org/10.3389/fneur.2019.00325 [2] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and S. Ullah Khan, “The rise of ‘big data’ on cloud computing: Review and open research issues,” Inf. Syst., vol. 47, pp. 98–115, Jan. 2015. https://doi.org/10.1016/j.is.2014.07.006 [3] M. Mubarak, C. D. Carothers, R. B. Ross, and P. Carns, “Enabling Parallel Simulation of Large-Scale HPC Network Systems,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 1, pp. 87–100, Jan. 2017. https://doi.org/10.1109/TPDS.2016.2543725 [4] C. D. Chambers et al., “Parallel processing of data”, Estados Unidos, US008555265B2, Oct. 8, 2013. [5] M. Hong, M. Razaviyayn, Z.-Q. Luo, and J.-S. Pang, “A Unified Algorithmic Framework for Block-Structured Optimization Involving Big Data: With applications in machine learning and signal processing,” IEEE Signal Process. Mag., vol. 33, no. 1, pp. 57–77, Jan. 2016. https://doi.org/10.1109/MSP.2015.2481563 [6] F. Facchinei, G. Scutari, and S. Sagratella, “Parallel Selective Algorithms for Nonconvex Big Data Optimization,” IEEE Trans. Signal Process., vol. 63, no. 7, pp. 1874–1889, Apr. 2015. https://doi.org/10.1109/TSP.2015.2399858 [7] E. Giraldo-Suarez, J. D. Martinez-Vargas, and G. Castellanos-Dominguez, “Reconstruction of Neural Activity from EEG Data Using Dynamic Spatiotemporal Constraints,” Int. J. Neural Syst., vol. 26, no. 07, p. 1650026, Nov. 2016. https://doi.org/10.1142/S012906571650026X [8] E. Giraldo-Suárez, J. I. Padilla-Buriticá, and C. G. Castellanos-Domínguez, “Dynamic inverse problem solution using a kalman filter smoother for neuronal activity estimation,” TecnoLógicas, no. 27, p. 33-51, Dec. 2011. https://doi.org/10.22430/22565337.3 [9] S. Castaño-Candamil, J. Höhne, J.-D. Martínez-Vargas, X.-W. An, G. Castellanos-Domínguez, and S. Haufe, “Solving the EEG inverse problem based on space–time–frequency structured sparsity constraints,” Neuroimage, vol. 118, pp. 598–612, Sep. 2015. https://doi.org/10.1016/j.neuroimage.2015.05.052 [10] G. Adde, M. Clerc, and R. Keriven, “Imaging methods for MEG/EEG inverse problem,” Int. J. Bioelectromagn., vol. 7, no. 2, pp. 111–114, Jan. 2005. [11] Z. Chen, J. Nagy, Y. Xi, and B. Yu, “Structured FISTA for Image Restoration,” arXiv Prepr., pp. 1–19, Jan. 2019. [12] Z. Peng, M. Yan, and W. Yin, “Parallel and distributed sparse optimization,” in 2013 Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 2013, pp. 659–646. https://doi.org/10.1109/ACSSC.2013.6810364 [13] Z. Li and J. Li, “A simple proximal stochastic gradient method for nonsmooth nonconvex optimization,” in NIPS’18 Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, 2018, pp. 5564–5574. [14] Y. Huang, L. C. Parra, and S. Haufe, “The New York Head—A precise standardized volume conductor model for EEG source localization and tES targeting,” Neuroimage, vol. 140, pp. 150–162, Oct. 2016. https://doi.org/10.1016/j.neuroimage.2015.12.019 [15] E. Cuartas Morales, C. D. Acosta-Medina, G. Castellanos-Dominguez, and D. Mantini, “A Finite-Difference Solution for the EEG Forward Problem in Inhomogeneous Anisotropic Media,” Brain Topogr., vol. 32, no. 2, pp. 229–239, Mar. 2019. https://doi.org/10.1007/s10548-018-0683-2
dc.rightsCopyright (c) 2019 TecnoLógicasen-US
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0en-US
dc.sourceTecnoLógicas; Vol. 22 No. 46 (2019); 233-243en-US
dc.sourceTecnoLógicas; Vol. 22 Núm. 46 (2019); 233-243es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectParallelized Algorithmsen-US
dc.subjectoptimizationen-US
dc.subjectbrain mappingen-US
dc.subjectelectroencephalographyen-US
dc.subjectAlgoritmos Paralelizadoses-ES
dc.subjectoptimizaciónes-ES
dc.subjectmapeo cerebrales-ES
dc.subjectelectroencefalografíaes-ES
dc.titleComparative Analysis of Parallel Brain Activity Mapping Algorithms for High Resolution Brain Modelsen-US
dc.titleAnálisis comparativo de algoritmos en paralelo de mapeo de actividad cerebral para modelos cerebrales de alta resoluciónes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem