Mostrar el registro sencillo del ítem

Revisión de algoritmos, métodos y técnicas para la detección de UAVs y UAS en aplicaciones de audio, radiofrecuencia y video

dc.creatorFlórez, Jimmy
dc.creatorOrtega, José
dc.creatorBetancourt, Andrés
dc.creatorGarcía, Andrés
dc.creatorBedoya, Marlon
dc.creatorBotero , Juan S.
dc.date2020-05-15
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1408
dc.identifier10.22430/22565337.1408
dc.descriptionUnmanned Aerial Vehicles (UAVs), also known as drones, have had an exponential evolution in recent times due in large part to the development of technologies that enhance the development of these devices. This has resulted in increasingly affordable and better-equipped artifacts, which implies their application in new fields such as agriculture, transport, monitoring, and aerial photography. However, drones have also been used in terrorist acts, privacy violations, and espionage, in addition to involuntary accidents in high-risk zones such as airports. In response to these events, multiple technologies have been introduced to control and monitor the airspace in order to ensure protection in risk areas. This paper is a review of the state of the art of the techniques, methods, and algorithms used in video, radiofrequency, and audio-based applications to detect UAVs and Unmanned Aircraft Systems (UAS). This study can serve as a starting point to develop future drone detection systems with the most convenient technologies that meet certain requirements of optimal scalability, portability, reliability, and availability.en-US
dc.descriptionLos vehículos aéreos no tripulados, conocidos también como drones, han tenido una evolución exponencial en los últimos tiempos, debido en gran parte al desarrollo de las tecnologías que potencian su desarrollo, lo cual ha desencadenado en artefactos cada vez más asequibles y con mejores prestaciones, lo que implica el desarrollo de nuevas aplicaciones como agricultura, transporte, monitoreo, fotografía aérea, entre otras. No obstante, los drones se han utilizado también en actos terroristas, violaciones a la privacidad y espionaje, además de haber producido accidentes involuntarios en zonas de alto riesgo de operación como aeropuertos. En respuesta a dichos eventos, aparecen tecnologías que permiten controlar y monitorear el espacio aéreo, con el fin de garantizar la protección en zonas de riesgo. En este artículo se realiza un estudio del estado del arte de la técnicas, métodos y algoritmos basados en video, en análisis de sonido y en radio frecuencia, para tener un punto de partida que permita el desarrollo en el futuro de un sistema de detección de drones, con las tecnologías más propicias, según los requerimientos que puedan ser planteados con las características de escalabilidad, portabilidad, confiabilidad y disponibilidad óptimas.es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.formattext/html
dc.languageeng
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1408/1632
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1408/1683
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1408/1732
dc.relation/*ref*/C. Guillot, “Drone’s-eye view,” in Image Testimonies Witnessing in Times of Social Mediavol., M. Richardson, Ed. Routledge, 2018, pp. 72–86. Available: https://www.taylorfrancis.com/books/e/9780429434853/chapters/10.4324/9780429434853-6
dc.relation/*ref*/B. Hearing and J. Franklin, “Drone detection and classification methods and apparatus,” US 9.275,645 B2, Mar. 2016. Available: https://patentimages.storage.googleapis.com/fa/28/8e/24456959a181c1/US9275645.pdf
dc.relation/*ref*/Ministry of Transport, Ministry of Business, Innovation and Employment, “Drones : Benefits study High level findings,” report no. MOT009.18 2019. Available: https://www.coursehero.com/file/52540225/04062019-Drone-Benefit-Studypdf/
dc.relation/*ref*/L. E. Davis, M. J. McNerney, J. Chow, T. Hamilton, S. Harting, and D. Byman, Armed and Dangerous?: UAVs and U.S. Security, RAND Corporation, pp. 37. 2014. Available: https://www.jstor.org/stable/10.7249/j.ctt6wq880
dc.relation/*ref*/M. Ezuma, F. Erden, C. K. Anjinappa, O. Ozdemir, and I. Guvenc, “Micro-UAV Detection and Classification from RF Fingerprints Using Machine Learning Techniques,” in 2019 IEEE Aerospace Conference, Big Sky, MT, 2019. Available: https://ieeexplore.ieee.org/abstract/document/8741970
dc.relation/*ref*/B. Custers, The Future of Drone Use, vol. 27. The Hague: T.M.C. Asser Press, 2016. https://doi.org/10.1007/978-94-6265-132-6
dc.relation/*ref*/P. Schober, C. Boer, and L. A. Schwarte, “Correlation Coefficients: Appropriate Use and Interpretation,” Anesth. Analg., vol. 126, no. 5, pp. 1763–1768, May 2018. https://doi.org/10.1213/ANE.0000000000002864
dc.relation/*ref*/K. Hartman, J. Krois and B. Waske, “E-Learning Project SOGA: Statistics and Geospatial Data Analysis. Department of Earth Sciences,” Correlation, 2018. Available:https://www.geo.fu-berlin.de/en/v/soga/Basics-of-statistics/Descriptive-Statistics/Measures-of-Relation-Between-Variables/Correlation/index.html
dc.relation/*ref*/J. Mezei and A. Molnar, “Drone sound detection by correlation,” in 2016 IEEE 11th International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara, 2016, pp. 509–518. https://doi.org/10.1109/SACI.2016.7507430
dc.relation/*ref*/E. Obilor , and E. Amadi “Test for Significance of Pearson’s correlation coefficient(r),” 2018. Available: https://www.researchgate.net/publication/323522779_Test_for_Significance_of_Pearson's_Correlation_Coefficient
dc.relation/*ref*/R. Artusi, P. Verderio, and E. Marubini, “Bravais-Pearson and Spearman correlation coefficients: Meaning, test of hypothesis and confidence interval,” Int. J. Biol. Markers, vol. 17, no. 2, pp. 148–151, Apr. 2002. https://doi.org/10.1177/172460080201700213
dc.relation/*ref*/J. C. F. de Winter, S. D. Gosling, and J. Potter, “Comparing the Pearson and Spearman correlation coefficients across distributions and sample sizes: A tutorial using simulations and empirical data.,” Psychol. Methods, vol. 21, no. 3, pp. 273–290, May. 2016. http://dx.doi.org/10.1037/met0000079
dc.relation/*ref*/J. H. Zar, “Spearman Rank Correlation,” in Encyclopedia of Biostatistics, Chichester, UK: John Wiley & Sons, Ltd, 2005, pp. 47–57. https://doi.org/10.1002/0470011815.b2a15150
dc.relation/*ref*/E. Szmidt and J. Kacprzyk, “The Spearman and Kendall rank correlation coefficients between intuitionistic fuzzy sets,” in Proceedings of the 7th conference of the European Society for Fuzzy Logic and Technology (EUSFLAT-2011), Aug. 2011, vol. 1, no. 1, pp. 521–528. https://doi.org/10.2991/eusflat.2011.85
dc.relation/*ref*/H. Abdi, “Kendall Rank Correlation Coefficient,” in The Concise Encyclopedia of Statistics, New York, NY: Springer New York, 2008, pp. 278–281. https://doi.org/10.1007/978-0-387-32833-1_211
dc.relation/*ref*/C. Yau, “R Tutorial and introduction to statistics,” Kendall Rank Coefficient, 2019. [Online]. Available: http://www.r-tutor.com/gpu-computing/correlation/kendall-rank-coefficient
dc.relation/*ref*/L. Hauzenberger and E. H. Ohlsson, “Drone Detection using Audio Analysis,” (Master Thesis), LUND university libraries, 2015.. [Online]. Available: https://lup.lub.lu.se/student-papers/search/publication/7362609
dc.relation/*ref*/D. O’Shaughnessy, “Linear predictive coding,” IEEE Potentials, vol. 7, no. 1, pp. 29–32, Feb. 1988. https://doi.org/10.1109/45.1890
dc.relation/*ref*/A. R. Madane, Z. Shah, R. Shah, and S. Thakur, “Speech Compression Using Linear Predictive Coding,” in proceedings International workshop on Machine Intelligence Research MIR labs., Mumbai. 2009, pp. 119–122. Available: https://www.semanticscholar.org/paper/Speech-Compression-Using-Linear-Predictive-Coding-Madane-Shah/985a532c0dcef1bf4526354faac41e6814b100bc
dc.relation/*ref*/M. W. Spratling, “A review of predictive coding algorithms,” Brain Cogn., vol. 112, pp. 92–97, Mar. 2017. https://doi.org/10.1016/j.bandc.2015.11.003
dc.relation/*ref*/J. Kim, C. Park, J. Ahn, Y. Ko, J. Park, and J. C. Gallagher, “Real-time UAV sound detection and analysis system,” in 2017 IEEE Sensors Applications Symposium (SAS), Glassboro, 2017. https://doi.org/10.1109/SAS.2017.7894058
dc.relation/*ref*/J. Diz, G. Marreiros, and A. Freitas, “Applying Data Mining Techniques to Improve Breast Cancer Diagnosis,” J. Med. Syst., vol. 40, no. 203, Aug. 2016. https://doi.org/10.1007/s10916-016-0561-y
dc.relation/*ref*/W. Cherif, “Optimization of K-NN algorithm by clustering and reliability coefficients: Application to breast-cancer diagnosis,” Procedia Comput. Sci., vol. 127, pp. 293–299, 2018. https://doi.org/10.1016/j.procs.2018.01.125
dc.relation/*ref*/Z. Zhang, “Introduction to machine learning: K-nearest neighbors,” Ann. Transl. Med., vol. 4, no. 11, Jun. 2016. https://doi.org/10.21037/atm.2016.03.37
dc.relation/*ref*/R. Sonnleitner, “Audio Identication via Fingerprinting Achieving Robustness to Severe Signal Modications,” (Doctoral Thesis), Departament of computational percepcion, Johanes Kleper University Linz. pp. 196, 2017. Available: https://es.scribd.com/document/384118954/Sonnleitner-Audio-Identification-via-FIngerprinting-achieving-robustness-to-severe-signal-modifications
dc.relation/*ref*/A. Bernardini, F. Mangiatordi, E. Pallotti, and L. Capodiferro, “Drone detection by acoustic signature identification,” Electron. Imaging, no. 5, pp. 60–64, Jan. 2017. https://doi.org/10.2352/ISSN.2470-1173.2017.10.IMAWM-168
dc.relation/*ref*/V. Jakkula, “Tutorial on Support Vector Machine (SVM),” Sch. EECS, Washingt. State Univ., pp. 1–13, 2011. Available: https://www.semanticscholar.org/paper/Tutorial-on-Support-Vector-Machine-(-SVM-)-Jakkula/7cc83e98367721bfb908a8f703ef5379042c4bd9
dc.relation/*ref*/Z. Rafii, B. Coover and J. Han, An audio fingerprinting system for live version identification using image processing techniques," 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, 2014, pp. 644-64. https://doi.org/10.1109/ICASSP.2014.6853675
dc.relation/*ref*/T. Edwina Alias, N. Naveen, and D. Mathew, “A novel acoustic fingerprint method for audio signal pattern detection,” Proc. - 2014 4th Int. Conf. Adv. Comput. Commun. ICACC 2014, no. 1, Cochin, 2014, pp. 64–68. https://doi.org/10.1109/ICACC.2014.21
dc.relation/*ref*/E. Páli, K. Máthé, L. Tamás, and L. Buşoniu, “Railway track following with the AR.Drone using vanishing point detection,” Proc. 2014 IEEE Int. Conf. Autom. Qual. Testing, Robot. AQTR 2014, Cluj-Napoca, 2014, pp. 1-6. https://doi.org/10.1109/AQTR.2014.6857870
dc.relation/*ref*/D. Zeng, X. Chen, M. Zhu, M. Goesele, and A. Kuijper, “Background Subtraction with Real-time Semantic Segmentation,” IEEE Access, vol. 10, pp. 1–1, Feb. 2019. https://doi.org/10.1109/ACCESS.2019.2899348
dc.relation/*ref*/A. Sobral, “BGSLibrary: An OpenCV C++ Background Subtraction Library,” IX Work. Visao Comput., 2013, pp. 1–3, 2013. Available: https://www.semanticscholar.org/paper/Tutorial-on-Support-Vector-Machine-(-SVM-)-Jakkula/7cc83e98367721bfb908a8f703ef5379042c4bd9
dc.relation/*ref*/S. Noh and M. Jeon, “A new framework for background subtraction using multiple cues,” in (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7726. Springer, Berlin, Heidelberg 2013. https://doi.org/10.1007/978-3-642-37431-9_38
dc.relation/*ref*/F. Christnacher et al., “Optical and acoustical UAV detection,” Electro-Optical Remote Sens. X, vol. 9988, Edinburgh 2016. https://doi.org/10.1117/12.2240752
dc.relation/*ref*/S. R. Ganti and Y. Kim, “Implementation of Detection and Tracking Mechanism For Small UAS,” in 2016 International Conference on Unmanned Aircraft Systems (ICUAS), Arlington, 2016, pp. 1254–1260. https://doi.org/10.1109/ICUAS.2016.7502513
dc.relation/*ref*/A. Schumann, L. Sommer, J. Klatte, T. Schuchert, and J. Beyerer, “Deep cross-domain flying object classification for robust UAV detection,” in 2017 14th IEEE Int. Conf. Adv. Video Signal Based Surveillance, AVSS 2017, Lecce, 2017. https://doi.org/10.1109/avss.2017.8078558
dc.relation/*ref*/E. Unlu, E. Zenou, N. Riviere, and P.-E. Dupouy, “Deep learning-based strategies for the detection and tracking of drones using several cameras,” IPSJ Trans. Comput. Vis. Appl., vol. 11, no. 7, Jul. 2019. https://doi.org/10.1186/s41074-019-0059-x
dc.relation/*ref*/X. Wang, P. Cheng, X. Liu, and B. Uzochukwu, “Fast and accurate, convolutional neural network based approach for object detection from UAV,” in Proc. IECON 2018 - 44th Annu. Conf. IEEE Ind. Electron. Soc., Washington, 2018, pp. 3171–3175. https://doi.org/10.1109/IECON.2018.8592805
dc.relation/*ref*/M. A. Akhloufi, S. Arola, and A. Bonnet, “Drones Chasing Drones: Reinforcement Learning and Deep Search Area Proposal,” Drones, vol. 3, no. 3, pp. 58, Jul. 2019. https://doi.org/10.3390/drones3030058
dc.relation/*ref*/S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol 39, no. 16, pp. 1137–1149, Jun. 2017. https://doi.org/10.1109/TPAMI.2016.2577031
dc.relation/*ref*/Liu. W., Anguelov D., Erhan D., Szegedy C., Reed S., Fu C. and Berg A., “SSD: Single Shot Multibox Detector”, European Conference on Computer Vision (ECCV), pp. 21–37, 2016. https://doi.org/10.1007/978-3-319-46448-0_2
dc.relation/*ref*/R. Girshick, “Fast R-CNN,” Proc. IEEE Int. Conf. Comput. Vis., vol. 2015 Inter, Santiago, 2015, pp. 1440–1448. Available: http://openaccess.thecvf.com/content_iccv_2015/html/Girshick_Fast_R-CNN_ICCV_2015_paper.html
dc.relation/*ref*/A. Flodell and C. Christensson, “Wildlife Surveillance Using a UAV and Thermal Imagery,” (Master Thesis), Department of Electrical Engineering, Linköping University pp. 132, 2016. Available: http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A941275&dswid=6107
dc.relation/*ref*/R. Stolkin, D. Rees, M. Talha, and I. Florescu, “Bayesian fusion of thermal and visible spectra camera data for region based tracking with rapid background adaptation,” in IEEE Int. Conf. Multisens. Fusion Integr. Intell. Syst., Hamburg, 2012, pp. 192–199. https://doi.org/10.1109/MFI.2012.6343021
dc.relation/*ref*/P. Andraši, T. Radišić, M. Muštra, and J. Ivošević, “Night-time Detection of UAVs using Thermal Infrared Camera,” Transp. Res. Procedia, vol. 28, pp. 183–190, 2017. https://doi.org/10.1016/j.trpro.2017.12.184
dc.relation/*ref*/Bavak Beveiligingsgroep BV.” “RF-Sensors. 2019. Available: https://www.bavak.com/integrated-security-solutions/drone-detection-systems/rf-sensors/
dc.relation/*ref*/Robin radas systems “9 Counter-Drone Technologies To Detect And Stop Drones Today.” 2019. [Online]. Available: https://www.robinradar.com/press/blog/9-counter-drone-technologies-to-detect-and-stop-drones-today
dc.relation/*ref*/W. D. Scheller, “Detecting Drones Using Machine Learning,” (Master Thesis) Electrical and Computer Engineering, Iowa State University, 2017. Available: https://lib.dr.iastate.edu/etd/16210/
dc.relation/*ref*/T. F. Wong, “Chapter 2 Introduction to Spread Spectrum Communications,” Univ. Florida, vol. 1, no. Spread Spectrum & CDMA, pp. 1–25, 2014. Available: http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=51467B980E5A5CFA33E44548DDEDA9A6?doi=10.1.1.117.8806&rep=rep1&type=pdf
dc.relation/*ref*/Asian Military Review “RF Techniques for Detection, Classification and Location of Commercial Drone Controllers - Asian Military Review.” [Online]. Available: https://asianmilitaryreview.com/2019/05/rf-techniques-for-detection-classification-and-location-of-commercial-drone-controllers/
dc.relation/*ref*/Y. K. Kwag, J. S. Jung, I. S. Woo, and M. S. Park, “Multi-band multi-mode SDR radar platform,” Proc. 2015 IEEE 5th Asia-Pacific Conf. Synth. Aperture Radar, APSAR 2015, Singapore, 2015, pp. 46–49. https://doi.org/10.1109/APSAR.2015.7306151
dc.relation/*ref*/H. Fu, S. Abeywickrama, L. Zhang, and C. Yuen, “Low-Complexity Portable Passive Drone Surveillance via SDR-Based Signal Processing,” IEEE Commun. Mag., vol. 56, no. 4, pp. 112–118, Apr. 2018. https://doi.org/10.1109/MCOM.2018.1700424
dc.relation/*ref*/P. Nguyen, H. Truong, M. Ravindranathan, A. Nguyen, R. Han, and T. Vu, “Drone Presence Detection by Identifying Physical Signatures in the Drone’s RF Communication,” Proc. 15th Annu. Int. Conf. Mob. Syst. Appl. Serv. - MobiSys ’17, New York, 2017. pp. 211–224. https://doi.org/10.1145/3081333.3081354
dc.relation/*ref*/W. Feng, G. Cherniak, J.-M. Friedt, and M. Sato, “Software defined radio implementation of passive RADAR using low-cost DVB-T receivers.” Available: https://pdfs.semanticscholar.org/0fd0/91cdc131a29aa0a3bdb50039e83d3de8addd.pdf
dc.relation/*ref*/S. Sciancalepore, O. A. Ibrahim, G. Oligeri, and R. Di Pietro, “Picking a Needle in a Haystack: Detecting Drones via Network Traffic Analysis,” Jan. 2019. Available: https://www.researchgate.net/profile/Savio_Sciancalepore/publication/330357671_Picking_a_Needle_in_a_Haystack_Detecting_Drones_via_Network_Traffic_Analysis/links/5c3f15c7299bf12be3cc1f89/Picking-a-Needle-in-a-Haystack-Detecting-Drones-via-Network-Traffic-Analysis.pdf
dc.relation/*ref*/N. P. Bhatta and M. Geethapriya, “RADAR and its Applications,” Jan. 2017. Available: https://www.researchgate.net/publication/316696944_RADAR_and_its_applications
dc.relation/*ref*/I. Güvenç, O. Ozdemir, Y. Yapici, H. Mehrpouyan, and D. Matolak, “Detection, localization, and tracking of unauthorized UAS and Jammers,” in 2017 AIAA/IEEE Digit. Avion. Syst. Conf. - Proc. (DASC), St, Petersburg 2017. https://doi.org/10.1109/DASC.2017.8102043
dc.relation/*ref*/V. Demirev, “Drone detection in urban environment – The new challenge for the Radar Systems Designers,” Security & Future, vol. 116, no. 3, pp. 114–116, 2017. Available: https://stumejournals.com/journals/confsec/2017/3/114
dc.relation/*ref*/F. Fioranelli, “Radar detection and classification of small UAVs and micro-drones.” The University of Glasgow, charity number SC004401. Available: https://www.gla.ac.uk/media/Media_480052_smxx.pdf
dc.relation/*ref*/C. Iovescu and S. Rao, “The Fundamentals of Millimeter Wave Sensors,” Texas Instruments, pp. 1–8, 2017. Available: https://www.mouser.ee/pdfdocs/mmwavewhitepaper.pdf
dc.relation/*ref*/National Instruments Corporation “¿Qué es el Sistema de Transceptor de Onda Milimétrica?”, 2020. Available: https://www.ni.com/es-co/shop/wireless-design-test/what-is-mmwave-transceiver-system.html
dc.relation/*ref*/J. A. Nanzer and V. C. Chen, “Microwave interferometric and Doppler radar measurements of a UAV,” in 2017 IEEE Radar Conf. RadarConf 2017, Seattle, 2017, pp. 1628–1633. https://doi.org/10.1109/RADAR.2017.7944468
dc.relation/*ref*/“Sistema de Transceptor de Onda Milimétrica - National Instruments.” [Online]. Available: http://sine.ni.com/np/app/main/p/docid/nav-116/lang/es/fmid/12027/ [64] Ancortek Inc “SDR-KIT 2400AD2” 2019. [Online]. Available: https://ancortek.com/sdr-kit-2400ad2
dc.relation/*ref*/Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR “Detection of small drones with millimeter wave radar” [Online]. Available: https://www.fhr.fraunhofer.de/en/businessunits/security/Detection-of-small-drones-with-millimeter-wave-radar.html
dc.relation/*ref*/G. Rankin, A. Tirkel, and A. Leukhin, “Millimeter wave array for UAV imaging MIMO radar,” in 2015 16th International Radar Symposium (IRS), Dresden, 2015. pp. 499–504. https://doi.org/10.1109/IRS.2015.7226217
dc.relation/*ref*/T. Debatty, “Software defined RADAR a state of the art,” 2010 2nd Int. Work. Cogn. Inf. Process. CIP2010, Elba, 2010, pp. 253–257. https://doi.org/10.1109/CIP.2010.5604241
dc.relation/*ref*/Y.-K. Kwag, I.-S. Woo, H.-Y. Kwak, and Y.-H. Jung, “Multi-Mode SDR Radar Platform for Smann Air-Vehicle Drone Detection,” in CIE International Conference on Radar, Guangzhou, 2017, pp. 4–7. https://doi.org/10.1109/RADAR.2016.8059254
dc.relation/*ref*/M. Jahangir, C. J. Baker, and G. A. Oswald, “Doppler characteristics of micro-drones with L-Band multibeam staring radar,” 2017 IEEE Radar Conf. RadarConf 2017, Seattle 2017, pp. 1052–1057. https://doi.org/10.1109/RADAR.2017.7944360
dc.relation/*ref*/A. Laučys et al., “Investigation of detection possibility of uavs using low cost marine radar,” Aviation, vol. 23, no. 2, pp. 48–53, May. 2019. https://doi.org/10.3846/aviation.2019.10320
dc.relation/*ref*/CERBAIR “Drone Detection & Neutralization- Part I | CERBAIR.” [Online]. Available:https://www.cerbair.com/drone-detection-and-neutralization-technologies-parti-blog/
dc.relation/*ref*/Squarehead Technology “Acoustic Drone Detection System Discovair – Rapid Deployable CUAS solution –.” [Online]. Available: https://www.sqhead.com/drone-detection/
dc.relation/*ref*/C. Huang, P. Chen, X. Yang, and K. T. T. Cheng, “REDBEE: A visual-inertial drone system for real-time moving object detection,” in IEEE Int. Conf. Intell. Robot. Syst., vol. 2017–Septe, , Vancouver, 2017, pp. 1725–1731. https://doi.org/10.1109/IROS.2017.8205985
dc.relation/*ref*/Help Net Security “Drone detection: What works and what doesn’t - Help Net Security.” 2015. [Online]. Available: https://www.helpnetsecurity.com/2015/05/28/drone-detection-what-works-and-what-doesnt/
dc.relation/*ref*/GCN “Drones: Findable but not stoppable.” [Online]. Available: https://gcn.com/articles/2015/06/03/drone-detection.aspx?m=1
dc.relation/*ref*/J. S. Patel, F. Fioranelli, and D. Anderson, “Review of radar classification and RCS characterisation techniques for small UAVs or drones,” IET Radar, Sonar Navig., vol. 12, no. 9, pp. 911–919, 2018. https://doi.org10.1049/iet-rsn.2018.0020
dc.relation/*ref*/L. Ziemba “Observe and Report: Considerations for Evaluating Drone Detection Systems.” Security Industry Association SIA, 2019. [Online]. Available: https://www.securityindustry.org/2019/09/06/observe-and-report-considerations-for-evaluating-drone-detection-systems/
dc.relation/*ref*/I. Bisio, C. Garibotto, F. Lavagetto, A. Sciarrone, and S. Zappatore, “Unauthorized Amateur UAV Detection Based on WiFi Statistical Fingerprint Analysis,” IEEE Commun. Mag., vol. 56, no. 4, pp. 106–111, Apr. 2018. https://doi.org/10.1109/MCOM.2018.1700340
dc.rightsCopyright (c) 2020 TecnoLógicasen-US
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0en-US
dc.sourceTecnoLógicas; Vol. 23 No. 48 (2020); 269-285en-US
dc.sourceTecnoLógicas; Vol. 23 Núm. 48 (2020); 269-285es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectDrone detectionen-US
dc.subjectDeep Learning detectionen-US
dc.subjectMachine Learning classificationen-US
dc.subjectsound sensorsen-US
dc.subjectvideo sensorsen-US
dc.subjectradiofrequency sensorsen-US
dc.subjectDetección de droneses-ES
dc.subjectaprendizaje profundoes-ES
dc.subjectaprendizaje de máquinaes-ES
dc.subjectsensores de sonidoes-ES
dc.subjectsensores de videoes-ES
dc.subjectsensores de radiofrecuenciaes-ES
dc.titleA review of algorithms, methods, and techniques for detecting UAVs and UAS using audio, radiofrequency, and video applicationsen-US
dc.titleRevisión de algoritmos, métodos y técnicas para la detección de UAVs y UAS en aplicaciones de audio, radiofrecuencia y videoes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeReview Articleen-US
dc.typeArtículos de revisiónes-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem