Mostrar el registro sencillo del ítem

Análisis por confiabilidad de la estabilidad de muros de pilas excavadas considerando las incertidumbres de los parámetros

dc.creatorMattos, Alvaro J.
dc.creatorMarín, Roberto J.
dc.date2020-05-15
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1433
dc.identifier10.22430/22565337.1433
dc.descriptionIn geotechnical engineering, bored-pile wall stability is evaluated using deterministic design methods based on safety factors to establish a margin against failure. In recent years, reliability-based design methods have been adopted to include uncertainty in the assessment of bored-pile wall stability as well as in the calculation of the feasible embedment depth of the walls. In this study, an expanded reliability-based design approach, along with finite element analysis, was applied to conduct parametric analyses of bored-pile wall stability. In serviceability limit state design framework, the results indicate that cohesion and groundwater level are factors that significantly affect bored-pile wall stability. Moreover, high variability in the cohesion range causes great uncertainty to determine the embedment depth of bored-pile wall. The feasible embedment depth can reach 4 times the free height considering the maximum coefficient of variation (50 %) of the cohesion. In turn, when the groundwater level is located at the retained ground surface, the horizontal displacement of the upper end of the wall reaches 15.2 mm, i.e., 0.0038 times the free height of the wall, for which the soil mobilizes active earth pressures. It was also found that the resolution of probabilistic results is highly influenced by the number of iterations in Monte Carlo simulations.en-US
dc.descriptionEn ingeniería geotécnica, la estabilidad de muros de pilas excavadas es evaluada mediante métodos de diseño determinísticos que se basan en el uso de factores de seguridad para establecer un margen para la falla. En los últimos años, se han adoptado métodos de diseño basados en la confiabilidad para involucrar la incertidumbre en la evaluación de la estabilidad de los muros, así como para el cálculo de la profundidad de empotramiento factible para los muros. En este estudio, se aplica un enfoque de diseño basado en la confiabilidad ampliada para desarrollar análisis paramétricos de la estabilidad de un muro de pilas excavadas, junto con un análisis de elementos finitos. En el marco del diseño por estado límite de servicio, los resultados indican que la cohesión del suelo y el nivel freático son factores que afectan significativamente la estabilidad del muro. Una alta variabilidad en el rango de cohesión causa una gran variabilidad en la incertidumbre para determinar la profundidad de empotramiento del muro. La profundidad de empotramiento factible puede alcanzar 4 veces la altura libre considerando el coeficiente de variación máximo (50 %) de la cohesión del suelo. Por otro lado, cuando el nivel freático se ubica en la superficie del terreno retenido, el desplazamiento horizontal del extremo superior del muro alcanza 15.2 mm, equivalente a 0.0038 veces la altura libre del muro, para el cual el suelo alcanza a movilizar los empujes activos. También se encontró que la resolución de los resultados probabilísticos está altamente influenciada por el número de iteraciones en las simulaciones de Monte Carlo.es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.formattext/html
dc.languageeng
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1433/1635
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1433/1670
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1433/1725
dc.relation/*ref*/Asociación Colombiana de Ingeniería Sísmica (AIS), “Reglamento Colombiano de Construcción Sísmo Resistente (NSR-10).” Ministerio de Ambiente, Vivienda y Desarrollo Territorial, Bogotá, D.C., Colombia, 2010. Disponible en: https://www.idrd.gov.co/sitio/idrd/sites/default/files/imagenes/titulo-a-nsr-100.pdf
dc.relation/*ref*/D.-Q. Li, K.-B. Shao, Z.-J. Cao, X.-S. Tang, and K.-K. Phoon, “A generalized surrogate response aided-subset simulation approach for efficient geotechnical reliability-based design,” Comput. Geotech., vol. 74, pp. 88–101, Apr. 2016. https://doi.org/10.1016/j.compgeo.2015.12.010
dc.relation/*ref*/Y. Wang, “MCS-based probabilistic design of embedded sheet pile walls,” Georisk, vol. 7, no. 3, pp.151–162, Mar. 2013. https://doi.org/10.1080/17499518.2013.765286
dc.relation/*ref*/R. J. Bathurst, P. Lin, and T. Allen, “Reliability-based design of internal limit states for mechanically stabilized earth walls using geosynthetic reinforcement,” Can. Geotech. J., vol. 56, no. 6, pp. 774–788, Jun. 2019. https://doi.org/10.1139/cgj-2018-0074
dc.relation/*ref*/Z.-J. Cao, X. Peng, D.-Q. Li, and X.-S. Tang, “Full probabilistic geotechnical design under various design scenarios using direct Monte Carlo simulation and sample reweighting,” Eng. Geol., vol. 248, no. 8, pp. 207–219, Jan. 2019. https://doi.org/10.1016/j.enggeo.2018.11.017
dc.relation/*ref*/E. F. García-Aristizábal, E. V. Aristizabal-Giraldo, R. J. Marín Sánchez, and J. C. Guzman-Martinez, “Implementación del modelo TRIGRS con análisis de confiabilidad para la evaluación de la amenaza a movimientos en masa superficiales detonados por lluvia,” TecnoLógicas, vol. 22, no. 44, pp. 111–129, Jan. 2019. https://doi.org/10.22430/22565337.1037
dc.relation/*ref*/Z. Q. Xiao, J. Huan, Y. J. Y. Wang, C. Xu, and H. Xia, “Random Reliability Analysis of Gravity Retaining Wall Structural System,” in 2014 International Conference on Mechanics and Civil Engineering (icmce-14), Dec. 2014. https://doi.org/10.2991/icmce-14.2014.36
dc.relation/*ref*/B. Hu, Z. Luo, C. L. Ho, and Y. Wang, “Efficient Reliability-Based Design Tool for Reinforced Earth Retaining Walls of Heavy Haul Railway Considering Internal Failure Modes,” in 2018 Joint Rail Conference, Pennsylvania, 2018. https://doi.org/10.1115/JRC2018-6110
dc.relation/*ref*/P. Zeng, T. Li, R. Jimenez, X. Feng, and Y. Chen, “Extension of quasi-Newton approximation-based SORM for series system reliability analysis of geotechnical problems,” Eng. Comput., vol. 34, no. 2, pp. 215–224, Aug. 2018. https://doi.org/10.1007/s00366-017-0536-8
dc.relation/*ref*/R. J. Marín, J. C. Guzmán-Martínez, H. E. Martínez Carvajal, E. F. García-Aristizábal, J. D. Cadavid-Arango, and P. Agudelo-Vallejo, “Evaluación del riesgo de deslizamientos superficiales para proyectos de infraestructura: caso de análisis en vereda El Cabuyal,” Ing. y Cienc., vol. 14, no. 27, pp. 153–177, Jun. 2018. https://doi.org/10.17230/ingciencia.14.27.7
dc.relation/*ref*/G.-H. Gao, D.-Q. Li, Z.-J. Cao, Y. Wang, and L. Zhang, “Full probabilistic design of earth retaining structures using generalized subset simulation,” Comput. Geotech., vol. 112, pp. 159–172, Aug. 2019. https://doi.org/10.1016/j.compgeo.2019.04.020
dc.relation/*ref*/W. Dong, “A Reliability Study of a Retaining Wall Design with Seismic Loads,” in Geo-Congress 2020: Engineering, Monitoring, and Management of Geotechnical Infrastructure, Minneapolis, 2020, pp. 543–551. https://doi.org/10.1061/9780784482797.052
dc.relation/*ref*/K. K. Phoon and J. Ching, “Semi-probabilistic reliability-based design,” in Reliability of Geotechnical Structures in ISO2394, K. K. Phoon and J. V. Retief, Eds. London: CRC Press, 2016, pp. 160–192.
dc.relation/*ref*/Y. Wang, T. Schweckendiek, W. Gong, T. Zhao, and K.-K. Phoon, “Direct probability-based design methods,” in Reliability of Geotechnical Structures in ISO2394, K.K. Phoon & J.V. Retief, Ed. London: CRC Press, 2016, pp. 194–226. Disponible en: https://www.routledge.com/Reliability-of-Geotechnical-Structures-in-ISO2394/Phoon-Retief/p/book/9781138029118
dc.relation/*ref*/K. K. Phoon, F. H. Kulhawy, and M. D. Grigoriu, “Reliability-based design for transmission line structure foundations,” Comput. Geotech., vol. 26, no. 3–4, pp. 169–185, Apr. 2000. https://doi.org/10.1016/S0266352X(99)00037-3
dc.relation/*ref*/J. C. Viviescas, J. P. Osorio, and J. E. Cañón, “Reliability-based designs procedure of earth retaining walls in geotechnical engineering,” Obras y Proy., no. 22, pp. 50–60, Dec. 2017. http://dx.doi.org/10.4067/S071828132017000200050
dc.relation/*ref*/Z. J. Cao, Y. Wang, D. Li “Practical reliability analysis and design by Monte Carlo Simulation in spreadsheet,” in Risk and reliability in geotechnical engineering, K.-K. Phoon and J. Ching, Eds. London: CRC Press, 2014, pp. 301–335. https://doi.org/10.1007/978-3-662-52914-0_7
dc.relation/*ref*/G. B. Baecher and J. T. Christian, Reliability and statistics in geotechnical engineering. John Wiley & Sons Ltd, 2003.
dc.relation/*ref*/International Organization for Standardization, “ISO2394:2015. General Principles on Reliability for Structures.” Geneva, 2015. Available: https://www.iso.org/obp/ui/#iso:std:iso:2394:ed-4:v1:en
dc.relation/*ref*/CEN, “Eurocode 7 Geotechnical design. Part 1: General rules. EN1997:2004.” European Commitee for Standardization, Brussels, 2004. Available: https://geotechnicaldesign.info/ec7p1.html
dc.relation/*ref*/B. K. Low and K. K. Phoon, “Reliability-based design and its complementary role to Eurocode 7 design approach,” Comput. Geotech., vol. 65, pp. 30–44, Apr. 2015. https://doi.org/10.1016/j.compgeo.2014.11.011
dc.relation/*ref*/K. K. Phoon and J. V. Retief, Reliability of geotechnical structures in ISO2394. London, UK.: CRC Press, 2016.
dc.relation/*ref*/K. K. Phoon, “Role of reliability calculations in geotechnical design,” Georisk, vol. 11, no. 1, pp. 4–21, Dec. 2016. https://doi.org/10.1080/17499518.2016.1265653
dc.relation/*ref*/Asociación Colombiana de Ingeniería Sísmica (AIS), “Norma colombiana de diseño de puentes (CCP-14).” INVIAS, Bogotá, D.C., Colombia, 2014. Available: https://www.invias.gov.co/index.php/archivo-y-documentos/documentos-tecnicos/3709-norma-colombiana-de-diseno-de-puentes-ccp14
dc.relation/*ref*/A. V. D. Bica and C. R. I. Clayton, “Limit equilibrium design methods for free embedded cantilever walls in granular soils,” Proc. Inst. Civ. Engrs., vol. 86, pp. 879–898, Oct. 1989. Available: https://trid.trb.org/view/313696
dc.relation/*ref*/B. J. Hansen, “Earth pressure and water pressure” ,” in Part II Actions And materal Strength, chapter 5 Earth Pressure And Water Pressure The institution of danish civil engineers: Copenhagen, 1953. Available: http://ocdi.or.jp/tec_st/tec_pdf/tech_271_311.pdf
dc.relation/*ref*/V. N. S. Murthy, Geotechnical engineering: principles and practices of soil mechanics and foundation enginerring. New York: Marcel Dekker, Inc, 2002.
dc.relation/*ref*/Z. H. Mazindrani and M. H. Ganjali, “Lateral Earth Pressure Problem of Cohesive Backfill with Inclined Surface,” J. Geotech. Geoenvironmental Eng., vol. 123, no. 2, pp. 110–112, Feb. 1997. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:2(110)
dc.relation/*ref*/Y. Wang, “Reliability-based design of spread foundations by Monte Carlo simulations,” Géotechnique, vol. 61, no. 8, pp. 677–685, Aug. 2011. https://doi.org/10.1680/geot.10.P.016
dc.relation/*ref*/Y. Wang, S. K. Au, and F. H. Kulhawy, “Expanded Reliability-Based Design Approach for Drilled Shafts,” J. Geotech. Geoenvironmental Eng., vol. 137, no. 2, pp. 40–150, Jan. 2011. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000421
dc.relation/*ref*/Z.-J. Cao and Y. Wang, “Practical Reliability-based Design of Deep Foundations Using Subset Simulation,” in Second International Conference on Vulnerability and Risk Analysis and Management (ICVRAM) and the Sixth International Symposium on Uncertainty, Modeling, and Analysis (ISUMA), Liverpool, 2014, pp. 2032–2042. https://doi.org/10.1061/9780784413609.204
dc.relation/*ref*/A. H.-S. Ang and W. H. Tang, Probability Concepts in Engineering: Emphasis on Applications in Civil & Environmental Engineering, 2nd ed. New York: Wiley, 2007.
dc.relation/*ref*/R. J. Marin and Á. J. Mattos, “Physically-based landslide susceptibility analysis using Monte Carlo simulation in a tropical mountain basin,” Georisk Assess. Manag. Risk Eng. Syst. Geohazards, pp. 1–14, Jun. 2019. https://doi.org/10.1080/17499518.2019.1633582
dc.relation/*ref*/34] A. Gaba, S. Hardy, L. Doughty, W. Powrie, and D. Selemetas, Guidance on embedded retaining wall design (CIRIA Report C76O). London: CIRIA, 2017.
dc.relation/*ref*/K. K. Phoon, Reliability-based design in geotechnical engineering: computations and applications. CRC Press, 2008. [36] K. K. Phoon and J. Ching, Risk and reliability in geotechnical engineering. CRC Press, 2017.
dc.relation/*ref*/A. Gaba, B. Simpson, W. Powrie, and D. Breadman, Embedded retaining walls: guidance for economical design (CIRIA Report C580). London: CIRIA, 2003.
dc.relation/*ref*/Ö. Bilgin, “Numerical studies of anchored sheet pile wall behavior constructed in cut and fill conditions,” Comput. Geotech., vol. 37, no. 3, pp. 399–407, Apr. 2010. https://doi.org/10.1016/j.compgeo.2010.01.002
dc.relation/*ref*/Á. J. Mattos, “Reliability analysis of cantilever bored-pile walls,” (Master’s Thesis) University of Antioquia. 2019. Available: https://www.researchgate.net/publication/335004832_Reliability_analysis_of_cantilever_bored-pile_walls_in_Spanish
dc.rightsCopyright (c) 2020 TecnoLógicasen-US
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0en-US
dc.sourceTecnoLógicas; Vol. 23 No. 48 (2020); 163-179en-US
dc.sourceTecnoLógicas; Vol. 23 Núm. 48 (2020); 163-179es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectBored-pile wallen-US
dc.subjectembedment depthen-US
dc.subjectreliability-based designen-US
dc.subjectMonte Carlo simulationen-US
dc.subjectfinite element analysisen-US
dc.subjectMuro de pilas excavadases-ES
dc.subjectprofundidad de empotramientoes-ES
dc.subjectdiseño basado en la confiabilidades-ES
dc.subjectsimulación de Montecarloes-ES
dc.subjectanálisis de elementos finitoses-ES
dc.titleReliability Analysis of Bored-pile Wall Stability Considering Parameter Uncertaintiesen-US
dc.titleAnálisis por confiabilidad de la estabilidad de muros de pilas excavadas considerando las incertidumbres de los parámetroses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem