Mostrar el registro sencillo del ítem

Dependencia de la sensibilidad en un cristal fotónico unidimensional con el ángulo incidente de la radiación para la detección de célula cancerígenas

dc.creatorTrujillo-Yague, Juan Carlos
dc.creatorSegovia-Chaves, Francis
dc.date2020-05-15
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1552
dc.identifier10.22430/22565337.1552
dc.descriptionIn geotechnical engineering, bored-pile wall stability is evaluated using deterministic design methods based on safety factors to establish a margin against failure. In recent years, reliability-based design methods have been adopted to include uncertainty in the assessment of bored-pile wall stability as well as in the calculation of the feasible embedment depth of the walls. In this study, an expanded reliability-based design approach, along with finite element analysis, was applied to conduct parametric analyses of bored-pile wall stability. In serviceability limit state design framework, the results indicate that cohesion and groundwater level are factors that significantly affect bored-pile wall stability. Moreover, high variability in the cohesion range causes great uncertainty to determine the embedment depth of bored-pile wall. The feasible embedment depth can reach 4 times the free height considering the maximum coefficient of variation (50 %) of the cohesion. In turn, when the groundwater level is located at the retained ground surface, the horizontal displacement of the upper end of the wall reaches 15.2 mm, i.e., 0.0038 times the free height of the wall, for which the soil mobilizes active earth pressures. It was also found that the resolution of probabilistic results is highly influenced by the number of iterations in Monte Carlo simulations.en-US
dc.descriptionEn este trabajo calculamos la dependencia de la sensibilidad de cinco células cancerígenas con el ángulo incidente de la radiación en un cristal fotónico unidimensional. El estudio se realizó para dos tipos de polarización: Transversal Eléctrica (TE) y Transversal Magnética (TM). Las muestras de las células se infiltran mediante biopsia líquida dentro de una nano cavidad que funciona como recipiente, y es revestida por nanocompuestos formados por la mezcla de la sílice con nano partículas de plata de tal forma que rompe la periodicidad del cristal fotónico compuesto por capas de SiO2 y aire. Encontramos picos de resonancia en el espectro de transmisión que caracteriza a cada célula infiltrada, por ende, este mecanismo de detección permite que el cristal fotónico funcione como un biosensor. Mediante el método de la matriz de trasferencia, para la polarización TE se observó un incremento de la sensibilidad al aumentar el ángulo incidente. Sin embargo, en la polarización TM no existieron aumentos significativos. Adicionalmente, se varía el espesor de la nano cavidad y el factor de relleno para obtener una mayor optimización. Los resultados revelan un incremento en la sensibilidad al aumentar el espesor de la nanocavidad, mientras que al aumentar el factor de relleno la sensibilidad decrece.es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.formattext/html
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1552/1636
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1552/1671
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1552/1726
dc.relation/*ref*/J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light”, Nature, vol. 386, pp.143-149, Mar. 1997. https://doi.org/10.1038/386143a0
dc.relation/*ref*/J. D. Joannopoulos, S. G Johnson, J. N. Winn, R. D Meade, “Photonic Crystals: Molding the Flow of Light”, 1th ed. Princeton: Princeton University Press, 2008. https://doi.org/10.2307/j.ctvcm4gz9
dc.relation/*ref*/S. Noda y T. Baba, “Roadmap on Photonic Crystals”, Springer, Boston, MA, 2003. https://doi.org/10.1007/978-1-4757-3716-5
dc.relation/*ref*/F. Segovia-Chaves y H. Vinck-Posada, “Dependence of the transmittance spectrum on temperature and thickness of superconducting defects coupled in dielectric one-dimensional photonic crystals”, Optik, vol. 170, pp. 384-390, Oct. 2018. https://doi.org/10.1016/j.ijleo.2018.05.109
dc.relation/*ref*/F. Segovia-Chaves y H. Vinck-Posada, “Effects of hydrostatic pressure, temperature and angle of incidence on the transmittance spectrum of TE mode in a 1D semiconductor photonic crystal”, Optik, vol. 161, pp. 64-69, May. 2018. https://doi.org/10.1016/j.ijleo.2018.01.087
dc.relation/*ref*/F. Segovia-Chaves y H. Vinck-Posada, “Tuning of transmittance spectrum in a one-dimensional superconductor-semiconductor photonic crystal”, Physica B: Condensed Matter, vol. 543, pp. 7-13, Aug. 2018. https://doi.org/10.1016/j.physb.2018.05.005
dc.relation/*ref*/H. J. El-Khozondar, P. Mahalakshmi, R. J. El-Khozondar, N. R. Ramanujam, I. S. Amiri, and P. Yupapin, “Design of one dimensional refractive index sensor using ternary photonic crystal waveguide for plasma blood samples applications,” Physica E: Low-dimensional Systems and Nanostructures, vol. 111, pp. 29–36, Jul. 2019. https://doi.org/10.1016/j.physe.2019.02.030
dc.relation/*ref*/L. Rayleigh. “XVII On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 24, no. 147, pp. 145-159, Aug. 1887.https://doi.org/10.1080/14786448708628074
dc.relation/*ref*/E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics”, Physical review letters, vol. 58, no. 20, pp. 2059-2062, May. 1987. https://doi.org/10.1103/PhysRevLett.58.2059
dc.relation/*ref*/S. John, “Strong localization of photons in certain disordered dielectric superlattices”. Physical review letters, vol. 58, no. 23, pp. 2486-2489, Jun. 1987. https://doi.org/10.1103/PhysRevLett.58.2486
dc.relation/*ref*/S. K. Awasthi, U. Malaviya, y S. P. Ojha, “Enhancement of omnidirectional total-reflection wavelength range by using one- dimensional ternary photonic bandgap material”, Journal of the Optical Society of America B, vol. 23, no. 12, pp. 2566-2571, Nov. 2006. https://doi.org/10.1364/JOSAB.23.002566
dc.relation/*ref*/V. Y. Zyryanov, V. A. Gunyakov, S. A. Myslivets, V. G. Arkhipkin y V. F. Shabanov, “Electrooptical switching in a one-dimensional photonic crystal”, Molecular Crystals and Liquid Crystals, vol. 488, no. 1, pp. 118-126, Sept. 2008. https://doi.org/10.1080/15421400802240359
dc.relation/*ref*/J. S. Patel and K. Rastani, “Electrically controlled polarization-independent liquid-crystal Fresnel lens arrays”, Optics letters, vol. 16, no. 7, pp. 532-534, Apr. 1991. https://doi.org/10.1364/OL.16.000532
dc.relation/*ref*/El-Ghany, “Temperature Sensors Based on One Dimensional Photonic Crystals with Different Double Defects”, Journal of Nanoelectronics and Optoelectronics, vol. 13, no. 2, pp. 221-228., Feb. 2018. https://doi.org/10.1166/jno.2018.2199
dc.relation/*ref*/J. Peng, D. Lyu, Y. Qu, W. Wang, T. Sun and M. Yang, “Thin films based one-dimensional photonic crystal for refractive index sensing”, Optik, vol. 158, pp. 1512-1518, Apr. 2018. https://doi.org/10.1016/j.ijleo.2018.01.047
dc.relation/*ref*/Q. Gong y X. Hu, Photonic crystals: principles and applications, Boca Raton, EE. UU: Taylor & Francis Group, 2014. https://doi.org/10.1201/b15654
dc.relation/*ref*/F. Segovia-Chaves, H. Vinck-Posada, V. Dhasarathan y M. S. Mani Rajan, “Transmittance spectrum in a 1D photonic crystal composed fused silica and sea water”. Optik, vol. 185, pp. 930-935, May 2019. https://doi.org/10.1016/j.ijleo.2019.03.110
dc.relation/*ref*/C. A. M La Porta y S. Zapperi, The physics of cancer, Cambridge, United Kingdom: Cambridge University Press, 2017. https://doi.org/10.1017/9781316271759
dc.relation/*ref*/D. Wirtz, K. Konstantopoulos y P. C. Searson, “The physics of cancer: the role of physical interactions and mechanical forces in metastasis”, Nature Reviews Cancer, vol. 11, no. 7, pp. 512-522, Jun. 2011. https://doi.org/10.1038/nrc3080
dc.relation/*ref*/T. Meyer, M. Schmitt, O. Guntinas-Lichius and J. Popp, “Toward an All-Optical Biopsy”. Optics and Photonics News, vol. 30, no. 4, pp. 26-33, Apr. 2019. https://doi.org/10.1364/OPN.30.4.000026
dc.relation/*ref*/B. Bohunicky y S, Mousa, “Biosensors: the new wave in cancer diagnosis”, Nanotechnology, science and applications, vol. 4, pp. 1-10, Dec. 2011. https://doi.org/10.2147/NSA.S13465
dc.relation/*ref*/H. Inan, et. al “Photonic crystals: emerging biosensors and their promise for point-of-care applications”, Chemical Society Reviews, vol. 46, no 2, pp. 366-388, Nov. 2017. https://doi.org/10.1039/c6cs00206d
dc.relation/*ref*/X. J. Liang, A.Q. Liu, C. S. Lim, T. C. Ayi, P. H. Yap “Determining refractive index of single living cell using an integrated microchip”, Sensors and Actuators A: Physical, vol. 133, no. 2, pp. 349-354 Feb. 2007. https://doi.org/10.1016/j.sna.2006.06.045
dc.relation/*ref*/S. Suresh, “Biomechanics and biophysics of cancer cells”. Acta Materialia, vol. 55, no. 12, pp. 3989-4014, Jul. 2007. https://doi.org/10.1016/j.actamat.2007.04.022
dc.relation/*ref*/N.R. Ramanujam, et al., “Enhanced sensitivity of cancer cell using one dimensional nano composite material coated photonic crystal”. Microsystem Technologies, vol. 25, no. 1, pp. 189-196, May. 2018. https://doi.org/10.1007/s00542-018-3947-6
dc.relation/*ref*/P. Yeh, Optical waves in layered media. New York, EE.UU: Wiley-interscience, 2005.
dc.relation/*ref*/S. Kinoshita, Bionanophotonics: an introductory textbook. Boca Raton, EE.UU: Taylor & Francis Group, 2016. https://doi.org/10.1201/b15260
dc.relation/*ref*/N. R. Ramanujam, y K. J. Wilson. “Optical properties of silver nanocomposites and photonic band gap–Pressure dependence”, Optics Communications, vol. 368, pp. 174-179, Jun. 2016. https://doi.org/10.1016/j.optcom.2016.02.018
dc.relation/*ref*/I.H. Malitsom, “Interspecimen comparison of the refractive index of fused silica”, Journal of the Optical Society of America, vol. 55, no. 10, pp. 1205-1209, Oct. 1965. https://doi.org/10.1364/josa.55.001205
dc.relation/*ref*/I. A. Cree, “Liquid biopsy for cancer patients: Principles and practice,” Pathogenesis, vol. 2, no. 1–2, pp. 1–4, Jun. 2015. https://doi.org/10.1016/j.pathog.2015.05.001
dc.relation/*ref*/R. Palmirotta, et all., “Liquid biopsy of cancer: a multimodal diagnostic tool in clinical oncology,” Therapeutic Advances in Medical Oncology, vol. 10, p. 175883591879463, Aug. 2018. https://doi.org/10.1177/1758835918794630
dc.relation/*ref*/N. Ayyanar, G. Thavasi Raja, M. Sharma, and D. Sriram Kumar, “Photonic Crystal Fiber-Based Refractive Index Sensor for Early Detection of Cancer,” IEEE Sensors Journal, vol. 18, no. 17, pp. 7093–7099, Jul. 2018. https://doi.org/10.1109/jsen.2018.2854375
dc.relation/*ref*/Z. Chunxiang, C. Caixiu Luo, L. Hao, y X. Yingmao, “The research on magnetic tunable characteristics of photonic crystal defect localized modes with a defect layer of nanoparticle magnetic fluids,” Chinese Optics Letters, vol. 12, no. s1, pp. S11602–311604, 2014. https://doi.org/10.3788/col201412.s11602
dc.rightsCopyright (c) 2020 TecnoLógicasen-US
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0en-US
dc.sourceTecnoLógicas; Vol. 23 No. 48 (2020); 181-195en-US
dc.sourceTecnoLógicas; Vol. 23 Núm. 48 (2020); 181-195es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectPhotonic crystalen-US
dc.subjecttransfer matrix methoden-US
dc.subjectcancer cellen-US
dc.subjectphotonic bandgapen-US
dc.subjectbiosensoren-US
dc.subjectCristal fotónicoes-ES
dc.subjectmétodo de la matriz de transferenciaes-ES
dc.subjectcélula cancerígenaes-ES
dc.subjectbanda fotónica prohibidaes-ES
dc.subjectbiosensores-ES
dc.titleSensitivity Dependence in a Dimensional Photonic Crystal with the Angle of Incidence of the Radiation for Cancer Cell Detectionen-US
dc.titleDependencia de la sensibilidad en un cristal fotónico unidimensional con el ángulo incidente de la radiación para la detección de célula cancerígenases-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem