Mostrar el registro sencillo del ítem

Diseño y control digital de un convertidor elevador entrelazado para sistemas de carga/descarga de baterías

dc.creatorEscudero Quintero, Cristian
dc.creatorAcevedo Pérez, Santiago
dc.creatorVillegas Ceballos, Juan Pablo
dc.creatorDaniel , Daniel
dc.creatorSerna Garcés, Sergio
dc.date2021-01-30
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1556
dc.identifier10.22430/22565337.1556
dc.descriptionAccording to the literature, battery ripple current is one of the phenomena that most significantly affect the state of health of batteries. Therefore, this paper presents a methodology to design a digital control in order to reduce such ripple current, which is injected by means of converters that process the charge and discharge energy. The strategy was designed for and implemented in an interlaced converter. The implemented methodology is presented in four stages: (i) modelling the battery-converter-charge system; (ii) designing the digital control based on the model; (iii) designing the practical implementation, where the instrumentation and implementation stage is presented using an embedded device; and (iv) practical validation of the operation of the strategy and the reduction of battery ripple current. The methodology presented here produced a correct performance of the digital control, fulfilling the design parameters of different operation modes and reducing the ripple current in the battery between 50 and 65%. This reduction protects the battery’s useful life and the sources or loads connected to the system. Additionally, it allows the state-of-charge and health estimation algorithms to increase their accuracy, which leads to an improvement in maintenance protocols and the planning of element replacement. en-US
dc.descriptionEste trabajo presenta la metodología de diseño de un control digital para reducir el rizado en la corriente que se inyecta a la batería por medio de los convertidores que procesan la energía de carga y descarga, el cual es uno de los parámetros indicados en la literatura que disminuyen el tiempo de vida de las baterías. Este trabajo tiene como alcance mostrar el procedimiento de diseño e implementación de la estrategia propuesta sobre un convertidor entrelazado. La metodología implementada se presenta por medio de cuatro etapas (i) modelado del sistema batería-convertidor-carga, (ii) diseño de control digital basado en el modelo, (iii) diseño de la plataforma práctica donde se presenta la etapa de instrumentación e implementación utilizando un dispositivo embebido y (iv) la validación práctica del funcionamiento de la estrategia presentada y la disminución del rizado inyectado en la batería. Por medio de la metodología presentada se logra evidenciar el correcto desempeño del control digital cumpliendo los parámetros de diseño para diferentes modos de operación de carga de la batería y reduciendo el rizado de corriente en la batería entre un 50 % a 65 %. Esta reducción protege la vida útil de la batería y de las fuentes o cargas conectadas al sistema. Adicionalmente, permite que los algoritmos de estimación de estado de carga y estado de salud incrementen su precisión, lo que conlleva a una mejora en los protocolos de mantenimiento y planificación de reemplazo de los elementos.es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.formattext/html
dc.formatapplication/zip
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1556/1801
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1556/1814
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1556/1821
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1556/1921
dc.relation/*ref*/F. Slah; A. Mansour; M. Hajer; B. Faouzi, “Analysis, modeling and implementation of an interleaved boost DC-DC converter for fuel cell used in electric vehicle,” Int. J. Hydrogen Energy, vol. 42, no. 48, pp. 28852–28864, Nov. 2017. https://doi.org/10.1016/j.ijhydene.2017.08.068
dc.relation/*ref*/P. Thounthong; S. Raël; B. Davat, “Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications,” J. Power Sources, vol. 193, no. 1, pp. 376–385, Aug. 2009. https://doi.org/10.1016/j.jpowsour.2008.12.120
dc.relation/*ref*/S. Bashash; H. K. Fathy, “Transport-Based Load Modeling and Sliding Mode Control of Plug-In Electric Vehicles for Robust Renewable Power Tracking,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 526–534, Mar. 2012. https://doi.org/10.1109/tsg.2011.2167526
dc.relation/*ref*/S. I. Serna-Garcés, “Contributions to the efficiency and safety of stand-alone DC microgrids,” (Tesis Doctoral), Universidad Nacional de Colombia, Manizalez, Colombia, 2018. https://repositorio.unal.edu.co/handle/unal/69113
dc.relation/*ref*/J. Li; M. A. Danzer, “Optimal charge control strategies for stationary photovoltaic battery systems,” J. Power Sources, vol. 258, pp. 365–373, Jul. 2014. https://doi.org/10.1016/j.jpowsour.2014.02.066
dc.relation/*ref*/M. A. Hannan; F. A. Azidin; A. Mohamed, “Hybrid electric vehicles and their challenges: A review,” Renew. Sustain. Energy Rev., vol. 29, pp. 135–150, Jan. 2014. https://doi.org/10.1016/j.rser.2013.08.097
dc.relation/*ref*/C. Pillot, “Battery Market Development for Consumer Electronics, Automotive, and Industrial: Materials Requirements & Trends,” in 5th Israeli Power Sources Conference 2015, Israel, pp. 1–40. https://docplayer.net/21143965-Battery-market-development-for-consumer-electronics-automotive-and-industrial-materials-requirements-and-trends.html
dc.relation/*ref*/M. R. Palacin; A. de Guibert, “Why do batteries fail?,” Science, vol. 351, no. 6273, pp. 1253292–1253292, Feb. 2016. https://doi.org/10.1126/science.1253292
dc.relation/*ref*/O. Erdinc; B. Vural; M. Uzunoglu, “A dynamic lithium-ion battery model considering the effects of temperature and capacity fading,” in 2009 International Conference on Clean Electrical Power, Capri. 2009, pp. 383–386. https://doi.org/10.1109/iccep.2009.5212025
dc.relation/*ref*/X. Liu; S. Qin; Y. He; X. Zheng; C. Cao, “SOC estimation of the lithium-ion battery with the temperature-based Nernst model,” in 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei. 2016, pp. 1419–1422. https://doi.org/10.1109/IPEMC.2016.7512498
dc.relation/*ref*/C. A. Ramos-Paja; A. J. Saavedra-Montes; J. D. Bastidas-Rodríguez, “Cargador de baterías fotovoltaico con control por modos deslizantes y limitación de la derivada de corriente de carga,” TecnoLógicas, vol. 21, no. 42, pp. 129–145, May. 2018. https://doi.org/10.22430/22565337.784
dc.relation/*ref*/M. Uno; K. Tanaka, “Influence of High-Frequency Charge-Discharge Cycling Induced by Cell Voltage Equalizers on the Life Performance of Lithium-Ion Cells,” IEEE Trans. Veh. Technol., vol. 60, no. 4, pp. 1505–1515, May. 2011. https://doi.org/10.1109/TVT.2011.2127500
dc.relation/*ref*/S.-C. Huang; K.-H. Tseng; J.-W. Liang; C.-L. Chang; M. Pecht, “An Online SOC and SOH Estimation Model for Lithium-Ion Batteries,” Energies, vol. 10, no. 4, p. 512, Apr. 2017. https://doi.org/10.3390/en10040512
dc.relation/*ref*/P. A. Topan; M. N. Ramadan; G. Fathoni; A. I. Cahyadi; O. Wahyunggoro, “State of Charge (SOC) and State of Health (SOH) estimation on lithium polymer battery via Kalman filter,” in 2016 2nd International Conference on Science and Technology-Computer (ICST), Yogyakarta. 2016, pp. 93–96. https://doi.org/10.1109/ICSTC.2016.7877354
dc.relation/*ref*/M.-H. Hung; C.-H. Lin; L.-C. Lee; C.-M. Wang, “State-of-charge and state-of-health estimation for lithium-ion batteries based on dynamic impedance technique,” J. Power Sources, vol. 268, pp. 861–873, Dec. 2014. https://doi.org/10.1016/j.jpowsour.2014.06.083
dc.relation/*ref*/H. Rahimi-Eichi; U. Ojha; F. Baronti; M.-Y. Chow, “Battery Management System: An Overview of Its Application in the Smart Grid and Electric Vehicles,” IEEE Ind. Electron. Mag., vol. 7, no. 2, pp. 4–16, Jun. 2013. https://doi.org/10.1109/mie.2013.2250351
dc.relation/*ref*/S. Serna-Garcés; D. Gonzalez Montoya; C. Ramos-Paja, “Sliding-Mode Control of a Charger/Discharger DC/DC Converter for DC-Bus Regulation in Renewable Power Systems,” Energies, vol. 9, no. 4, p. 245, Mar. 2016. https://doi.org/10.3390/en9040245
dc.relation/*ref*/S. Serna-Garcés; D. González Montoya; C. Ramos-Paja, “Control of a Charger/Discharger DC/DC Converter with Improved Disturbance Rejection for Bus Regulation,” Energies, vol. 11, no. 3, pp. 594, Mar. 2018. https://doi.org/10.3390/en11030594
dc.relation/*ref*/J. P. Villegas Ceballos; S. I. Serna‐Garcés; D. González Montoya; C. A. Ramos-Paja; J. D. Bastidas‐Rodríguez, “Charger/discharger DC/DC converter with interleaved configuration for DC‐bus regulation and battery protection,” Energy Sci. Eng., vol. 8, no. 2, pp. 530–543, Feb. 2020. https://doi.org/10.1002/ese3.534
dc.relation/*ref*/M. A. Devi; K. Valarmathi; R. Mahendran, “Ripple current reduction in interleaved boost converter by using advanced PWM techniques,” in 2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies, Ramanathapuram. 2014, pp. 115–119. https://doi.org/10.1109/icaccct.2014.7019291
dc.relation/*ref*/K. Siri; C. Q. Lee; T.-E. Wu, “Current distribution control for parallel connected converters. I,” IEEE Trans. Aerosp. Electron. Syst., vol. 28, no. 3, pp. 829–840, Jul. 1992. http://dx.doi.org/10.1109/7.256303
dc.relation/*ref*/R. Giral; L. Martinez-Salamero; S. Singer, “Interleaved converters operation based on CMC,” IEEE Trans. Power Electron., vol. 14, no. 4, pp. 643–652, Jul. 1999. https://doi.org/10.1109/63.774201
dc.relation/*ref*/D. J. Perreault; J. G. Kassakian, “Distributed interleaving of paralleled power converters,” IEEE Trans. Circuits Syst. I Fundam. Theory Appl., vol. 44, no. 8, pp. 728–734, Aug. 1997. http://dx.doi.org/10.1109/81.611269
dc.relation/*ref*/S. Vijayalakshmi; E. Arthika; G. S. Priya, “Modeling and simulation of interleaved Buck-boost converter with PID controller,” in 2015 IEEE 9th International Conference on Intelligent Systems and Control (ISCO), Coimbatore. 2015, pp. 1–6. http://dx.doi.org/10.1109/ISCO.2015.7282392
dc.relation/*ref*/H. M. M. Swamy; K. P. Guruswamy; S. P. Singh, “Design, Modeling and Analysis of Two Level Interleaved Boost Converter,” in 2013 International Conference on Machine Intelligence and Research Advancement, Katra. 2013, pp. 509–514. https://doi.org/10.1109/ICMIRA.2013.107
dc.relation/*ref*/M. Habib; F. Khoucha; A. Harrag, “GA-based robust LQR controller for interleaved boost DC–DC converter improving fuel cell voltage regulation,” Electr. Power Syst. Res., vol. 152, pp. 438–456, Nov. 2017. https://doi.org/10.1016/j.epsr.2017.08.004
dc.relation/*ref*/R. Giral; L. Martinez-Salamero; R. Leyva; J. Maixe, “Sliding-mode control of interleaved boost converters,” IEEE Trans. Circuits Syst. I Fundam. Theory Appl., vol. 47, no. 9, pp. 1330–1339, 2000. http://dx.doi.org/10.1109/81.883328
dc.relation/*ref*/R. W. Erickson; D. Maksimović, Fundamentals of Power Electronics 2nd. ed. . Springer Science & Business Media, 2007.
dc.relation/*ref*/B. C. Kuo, Automatic control systems. Upper Saddle River, NJ. Prentice Hall PTR, 1987.
dc.relation/*ref*/T. I. Inc., “ TMS320F2823x Digital Signal Controllers (DSCs),” Dallas, TX, USA, 2016. https://www.ti.com/lit/er/sprz272m/sprz272m.pdf?ts=1603208194464&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fdocs%252Funiversalsearch.tsp%253FsearchTerm%253DTMS320F2823x
dc.relation/*ref*/I. Rectifier, “IRF3710PbF HEXFET® Power MOSFET,” California, USA, 2010. https://www.infineon.com/dgdl/irf3710pbf.pdf?fileId=5546d462533600a4015355df95df1947
dc.relation/*ref*/Renesas Electronics Corporation, “HIP4081A, 80V High Frequency H-Bridge Driver,” Milpitas, California, Estados Unidos. https://www.renesas.com/jp/ja/www/doc/application-note/an9405.pdf
dc.relation/*ref*/A. Device, “High Voltage, Bidirectional Current Shunt Monitor,” Norwood, Massachusetts,USA, 2017. https://www.analog.com/media/en/technical-documentation/data-sheets/ad8210.pdf
dc.rightsCopyright (c) 2020 TecnoLógicasen-US
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0en-US
dc.sourceTecnoLógicas; Vol. 24 No. 50 (2021); e1556en-US
dc.sourceTecnoLógicas; Vol. 24 Núm. 50 (2021); e1556es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectInterleaved converteren-US
dc.subjectboost converteren-US
dc.subjectbatteryen-US
dc.subjectdigital controlen-US
dc.subjectConvertidor entrelazadoes-ES
dc.subjectconvertidor elevadores-ES
dc.subjectbateríaes-ES
dc.subjectcontrol digitales-ES
dc.titleDesign and Digital Control of an Interleaved Boost Converter for Battery Charge/Dischargeen-US
dc.titleDiseño y control digital de un convertidor elevador entrelazado para sistemas de carga/descarga de bateríases-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem