Mostrar el registro sencillo del ítem

Influencia de los modelos de turbulencia, densidad, cambio de fase e interfaz en la simulación numérica de un termosifón cerrado de dos fases

dc.creatorGamboa, David
dc.creatorHerrera , Bernardo
dc.date2020-09-15
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1563
dc.identifier10.22430/22565337.1563
dc.descriptionA heat pipe can be considered a highly effective thermal conduction device, which is especially desirable in heat transfer operations in order to ensure high energy efficiency. However, the operation of heat pipes comprises different heat and mass transfer phenomena, such phase change, heat conduction and convection, solid-liquid and vapor-liquid surface interactions, surface vaporization, and nucleate boiling. Therefore, modelling heat pipes is a highly complex task that demands detailed knowledge of the physical phenomena involved and choosing suitable theoretical models to obtain a good representation of the real nature of the heat and mass transfer processes. In this study, some models and parameters available in the commercial CFD software ANSYS Fluent for turbulence, density, phase change, and phase interfaces were examined to determine their influence on the prediction of the heat and mass transfer in a two-phased closed thermosyphon (TPCT). The numerical results show that using a turbulence viscous model is not necessary and that a variable density model improves the temperature distribution inside the TPCT. Furthermore, using high mass and energy transfer coefficients during condensation makes the vapor remain close to the saturation temperature. Finally, a sharp interphase model is strongly recommended for this type of process.en-US
dc.descriptionUn tubo de calor puede ser considerado como un dispositivo con alta conductividad térmica, el cual es frecuentemente usado en procesos de transferencia de calor para garantizar una alta eficiencia energética. Además, la operación de los tubos de calor comprende diferentes fenómenos de transferencia de calor y masa, como cambio de fase, conducción y convección, interacciones sólido-líquido y vapor-líquido, evaporación y ebullición nucleada, además de otras. Por lo tanto, el modelado de los tubos de calor es un proceso de alta complejidad, el cual requiere el conocimiento del fenómeno físico allí presente para escoger los modelos teóricos adecuados, logrando así, obtener una representación aceptable de los procesos de transferencia de masa y energía que naturalmente se presentan. En este trabajo, algunos modelos y parámetros disponibles en el software ANSYS Fluent como el modelo de viscosidad, densidad, cambio de fase e interfaz entre fases fueron analizados para determinar su influencia sobre la predicción de la transferencia de masa y energía en un termosifón cerrado de dos fases. Los resultados numéricos mostraron que, usar un modelo de viscosidad turbulenta no es necesario, un modelo de densidad variable mejora la distribución de la temperatura y que un modelo de interfaz Sharp es altamente recomendado en estos procesos.es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.formattext/html
dc.languageeng
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1563/1709
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1563/1762
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1563/1781
dc.relation/*ref*/A. Alizadehdakhel; M. Rahimi; A. Abdulaziz Alsairafi, “CFD modeling of flow and heat transfer in a thermosyphon,” Int. Commun. Heat Mass Transf., vol. 37, no. 3, pp. 312–318, Mar. 2010. https://doi.org/10.1016/j.icheatmasstransfer.2009.09.002
dc.relation/*ref*/B. Fadhl; L. C. Wrobel; H. Jouhara, “Numerical modelling of the temperature distribution in a two-phase closed thermosyphon,” Appl. Therm. Eng., vol. 60, no. 1–2, pp. 122–131, Oct. 2013. https://doi.org/10.1016/j.applthermaleng.2013.06.044
dc.relation/*ref*/K. Kerrigan; H. Jouhara; G. E. O’Donnell; A. J. Robinson, “Heat pipe-based radiator for low grade geothermal energy conversion in domestic space heating,” Simul. Model. Pract. Theory, vol. 19, no. 4, pp. 1154–1163, Apr. 2011. https://doi.org/10.1016/j.simpat.2010.05.020
dc.relation/*ref*/Y.-C. Weng; H.-P. Cho; C. C. Chang; S. L. Chen, “Heat pipe with PCM for electronic cooling,” Appl. Energy, vol. 88, no. 5, pp. 1825–1833, May 2011. https://doi.org/10.1016/j.apenergy.2010.12.004
dc.relation/*ref*/X. Ping Wu; P. Johnson; A. Akbarzadeh, “Application of heat pipe heat exchangers to humidity control in air-conditioning systems,” Appl. Therm. Eng., vol. 17, no. 6, pp. 561–568, Jun. 1997. https://doi.org/10.1016/S1359-4311(96)00058-0
dc.relation/*ref*/Z. Xu; Y. Zhang; B. Li; C. C. Wang; Y. Li, “The influences of the inclination angle and evaporator wettability on the heat performance of a thermosyphon by simulation and experiment,” Int. J. Heat Mass Transf., vol. 116, pp. 675–684, Jan. 2018. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.028
dc.relation/*ref*/K. Kafeel; A. Turan, “Simulation of the response of a thermosyphon under pulsed heat input conditions,” Int. J. Therm. Sci., vol. 80, pp. 33–40, Jun. 2014. https://doi.org/10.1016/j.ijthermalsci.2014.01.020
dc.relation/*ref*/H. Jouhara; B. Fadhl; L. C. Wrobel, “Three-dimensional CFD simulation of geyser boiling in a two- phase closed thermosyphon,” Int. J. Hydrogen Energy, vol. 41, no. 37, pp. 16463–16476, Oct. 2016. https://doi.org/10.1016/j.ijhydene.2016.02.038
dc.relation/*ref*/B. Fadhl; L. C. Wrobel; H. Jouhara, “CFD modelling of a two- phase closed thermosyphon charged with R134a and R404a,” Appl. Therm. Eng., vol. 78, pp. 482–490, Mar. 2015. https://doi.org/10.1016/j.applthermaleng.2014.12.062
dc.relation/*ref*/K. S. Ong; G. Goh; K. H. Tshai; W. M. Chin, “Thermal resistance of a thermosyphon filled with R410A operating at low evaporator temperature,” Appl. Therm. Eng., vol. 106, no. 5, pp. 1345–1351, Aug. 2016. https://doi.org/10.1016/j.applthermaleng.2016.06.080
dc.relation/*ref*/S. ed-D. Fertahi; T. Bouhal; Y. Agrouaz; T. Kousksou; T. El Rhafiki; Y. Zeraouli, “Performance optimization of a two-phase closed thermosyphon through CFD numerical simulations,” Appl. Therm. Eng., vol. 128, pp. 551–563, Jan. 2018. https://doi.org/10.1016/j.applthermaleng.2017.09.049
dc.relation/*ref*/W.-W. Wang; Y. Cai; R.-Z. Liu; F.-Y. Zhao; D. Liu, “Experimental and numerical investigations of a radial heat pipe for waste heat recovery,” Appl. Therm. Eng., vol. 154, pp. 602– 613, May 2019. https://doi.org/10.1016/j.applthermaleng.2019.03.063
dc.relation/*ref*/X. Wang; H. Yao; J. Li; Y. Wang; Y. Zhu, “Experimental and numerical investigation on heat transfer characteristics of ammonia thermosyhpons at shallow geothermal temperature,” Int. J. Heat Mass Transf., vol. 136, pp. 1147–1159, Jun. 2019. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.080
dc.relation/*ref*/J. Cao; G. Pei; M. Bottarelli; C. Chen; D. Jiao; J. Li, “Effect of non-condensable gas on the behaviours of a controllable loop thermosyphon under active control,” Appl. Therm. Eng., vol. 146, pp. 288– 294, Jan. 2019. https://doi.org/10.1016/j.applthermaleng.2018.09.132
dc.relation/*ref*/M. Azzolin; A. Mariani; L. Moro; A. Tolotto; P. Toninelli; D. Del Col, “Mathematical model of a thermosyphon integrated storage solar collector,” Renew. Energy, vol. 128, no. Part A, pp. 400–415, Dec. 2018. https://doi.org/10.1016/j.renene.2018.05.057
dc.relation/*ref*/H. Zhang; S. Shao; C. Tian, “Simulation of the Thermosyphon Free Cooling Mode in an Integrated System of Mechanical Refrigeration and Thermosyphon for Data Centers,” Energy Procedia, vol. 75, pp. 1458–1463, Aug. 2015. https://doi.org/10.1016/j.egypro.2015.07.260
dc.relation/*ref*/X. Wang; Y. Wang; H. Chen; Y. Zhu, “A combined CFD/visualization investigation of heat transfer behaviors during geyser boiling in two-phase closed thermosyphon,” Int. J. Heat Mass Transf., vol. 121, pp. 703–714, Jun. 2018. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.005
dc.relation/*ref*/C. W. Hirt; B. D. Nichols, “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,” J. Comput. Phys., vol. 39, no. 1, pp. 201–225, Jan. 1981. https://doi.org/10.1016/0021-9991(81)90145-5
dc.relation/*ref*/J. U.Brackbill; D. B. Kothe; C. Zemach, “A Continuum Method for Modeling Surface Tension,” J. Comput. Phys., pp. 335–354, Vol, 100, no. 2, Jun. 1992. https://doi.org/10.1016/0021-9991(92)90240-Y
dc.relation/*ref*/Y. A. Cengel; M. A. Boles “A Pressure Iteration Scheme for Two-Phase Flow Modeling,” in Computational Methods for Two-Phase Flow and Particle Transport, pp. 61-82, McGrawHill., 1980. https://doi.org/10.1142/9789814460286_0004
dc.relation/*ref*/Y. A. Cengel; M. A. Boles, Termodinámica, 7th ed. México, 2009.
dc.relation/*ref*/R. Mott, Mecánica de fluídos. Pearson: Mexico, 2006.
dc.rightsCopyright (c) 2020 TecnoLógicasen-US
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0en-US
dc.sourceTecnoLógicas; Vol. 23 No. 49 (2020); 53-70en-US
dc.sourceTecnoLógicas; Vol. 23 Núm. 49 (2020); 53-70es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectThermosyphonen-US
dc.subjectnumerical simulationen-US
dc.subjectheat pipeen-US
dc.subjectphase changeen-US
dc.subjectComputational Fluid Dynamicsen-US
dc.subjectTermosifónes-ES
dc.subjectsimulación numéricaes-ES
dc.subjecttubo de calores-ES
dc.subjectcambio de fasees-ES
dc.subjectDinámica de Fluidos Computacionales-ES
dc.titleInfluence of Turbulence, Density, Phase Change, and Phase Interfaces Models on the Performance of the Numerical Simulation of a Two-Phase Closed Thermosyphonen-US
dc.titleInfluencia de los modelos de turbulencia, densidad, cambio de fase e interfaz en la simulación numérica de un termosifón cerrado de dos faseses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem