Mostrar el registro sencillo del ítem

Caracterización beta, gamma y de oscilaciones de alta frecuencia para localización de diana en procedimientos de Estimulación Cerebral Profunda

dc.creatorValderrama-Hincapié, Sarah
dc.creatorRoldán-Vasco, Sebastián
dc.creatorRestrepo-Agudelo, Sebastián
dc.creatorSánchez-Restrepo, Frank
dc.creatorHutchison, William D.
dc.creatorLópez-Ríos, Adriana L.
dc.creatorHernández, Alher Mauricio
dc.date2020-09-15
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1564
dc.identifier10.22430/22565337.1564
dc.descriptionDeep Brain Stimulation (DBS) has been successfully used to treat patients with Parkinson’s Disease. DBS employs an electrode that regulates the oscillatory activity of the basal ganglia, such as the subthalamic nucleus (STN). A critical point during the surgical implantation of such electrode is the precise localization of the target. This is done using presurgical images, stereotactic frames, and microelectrode recordings (MER). The latter allows neurophysiologists to visualize the electrical activity of different structures along the surgical track, each of them with well-defined variations in the frequency pattern; however, this is far from an automatic or semi-automatic method to help these specialists make decisions concerning the surgical target. To pave the way to automation, we analyzed three frequency bands in MER signals acquired from 11 patients undergoing DBS: beta (13-40 Hz), gamma (40-200 Hz), and high-frequency oscillations (HFO – 201-400 Hz). In this study, we propose and assess five indexes in order to detect the STN: variations in autoregressive parameters and their derivative along the surgical track, the energy of each band calculated using the Yule-Walker power spectral density, the high-to-low (H/L) ratio, and its derivative. We found that the derivative of one parameter of the beta band and the H/L ratio of the HFO/gamma bands produced errors in STN targeting like those reported in the literature produced by image-based methods (<2 mm). Although the indexes introduced here are simple to compute and could be applied in real time, further studies must be conducted to be able to generalize their results.en-US
dc.descriptionLa estimulación cerebral profunda (DBS por sus siglas en inglés) ha sido usada exitosamente en el tratamiento de pacientes con enfermedad de Párkinson. La DBS tiene un electrodo que regula la actividad oscilatoria de los ganglios basales involucrados, como el núcleo subtalámico (STN). Un aspecto crítico en el implante de dicho electrodo es la localización precisa de la diana quirúrgica. Esta se realiza mediante imágenes pre-quirúrgicas, marcos estereotácticos y registros de micro-electrodos (MER). Este último permite visualizar la actividad eléctrica de diferentes estructuras a través del recorrido quirúrgico, cada una de ellas con un patrón de variaciones bien definidas en frecuencia; sin embargo, esto dista de ser un método automático o semi-automático que ayude al neurofisiólogo a tomar decisiones en cuanto a la diana quirúrgica. Con el ánimo de contribuir a la automatización, analizamos tres bandas de frecuencias de señales MER adquiridas en 11 pacientes sometidos a DBS: beta (13-40 Hz), gamma (40-200 Hz) y oscilaciones de alta frecuencia (HFO – 201-400 Hz). Se propusieron y evaluaron 5 índices para detectar el STN: variaciones de parámetros auto-regresivos y su derivada a lo largo del recorrido quirúrgico, la energía de cada banda a partir de la densidad espectral de potencia mediante el método de Yule-Walker, la relación de frecuencias altas a bajas y su derivada. Encontramos que la derivada de un parámetro de la banda beta y la relación alta-bajas de las bandas HFO/gamma alcanzaron errores en la localización del STN, similares a los reportados en la literatura (<2mm). Aunque los índices propuestos son sencillos de calcular y de fácil implementación en tiempo real, se deben seguir explorando para incrementar la capacidad de generalización de los resultados obtenidos.es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.formattext/html
dc.languageeng
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1564/1698
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1564/1759
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1564/1780
dc.relation/*ref*/F. Fröhlich, “Chapter 23” in Parkinson’s Disease BT - Network Neuroscience, San Diego: Academic Press, 2016, pp. 291–296.
dc.relation/*ref*/L. M. de Lau; M. M. Breteler, “Epidemiology of Parkinson’s disease,” Lancet Neurol., vol. 5, no. 6, pp. 525–535, Jun. 2006. https://doi.org/10.1016/S1474-4422(06)70471-9
dc.relation/*ref*/P. J. Magill; A. Sharott; M. D. Bevan; P. Brown; J. P. Bolam, “Synchronous Unit Activity and Local Field Potentials Evoked in the Subthalamic Nucleus by Cortical Stimulation,” J. Neurophysiol., vol. 92, no. 2, pp. 700–714, Aug. 2004. https://doi.org/10.1152/jn.00134.2004
dc.relation/*ref*/J. Obeso; M. Rodriguez; M. DeLong, “Basal ganglia pathophysiology: A critical review,” Adv Neurol, pp. 3–18, 1997. Available: https://www.semanticscholar.org/paper/Basal-ganglia-pathophysiology.-A-critical-review.-Obeso-Rodr%C3%ADguez/3eb7d5a60eb454540223aac8706dd863ccfca2e0
dc.relation/*ref*/J. M. Bronstein et al., “Deep Brain Stimulation for Parkinson Disease An Expert Consensus and Review of Key Issues,” Arch. Neurol., vol. 68, no. 2, pp. 165–171, Feb. 2011. http://dx.doi.org/10.1001/archneurol.2010.260
dc.relation/*ref*/A. Moran; I. Bar-gad; H. Bergman; Z. Israel, “Real-Time Refinement of Subthalamic Nucleus Targeting Using Bayesian Decision-Making on the Root Mean Square Measure,” Mov. Disord., vol. 21, no. 9, pp. 1425–1431, Jun. 2006. https://doi.org/10.1002/mds.20995
dc.relation/*ref*/A. O. Hebb; K. J. Miller, “Semi-automatic stereotactic coordinate identification algorithm for routine localization of Deep Brain Stimulation electrodes,” J. Neurosci. Methods, vol. 187, no. 1, pp. 114–119, Mar. 2010, https://doi.org/10.1016/j.jneumeth.2009.12.016
dc.relation/*ref*/J. A. Thompson et al., “Semi-automated application for estimating subthalamic nucleus boundaries and optimal target selection for deep brain stimulation implantation surgery,” pp. 1–10, May. 2018. https://doi.org/10.3171/2017.12.JNS171964
dc.relation/*ref*/R. Dallapiazza; M. S. McKisic; B. Shah; W. J. Elias, “Neuromodulation for Movement Disorders,” Neurosurg. Clin. N. Am., vol. 25, no. 1, pp. 47–58, Jan. 2014. https://doi.org/10.1016/j.nec.2013.08.002
dc.relation/*ref*/A.-S. Moldovan; S. Groiss; S. Elben; M. Südmeyer, A. Schnitzler, and L. Wojtecki, “The treatment of Parkinson′s disease with deep brain stimulation: current issues,” Neural Regen. Res., vol. 10, no. 7, p. 1018-1022, Jul. 2015. https://doi.org/10.4103/1673-5374.160094
dc.relation/*ref*/A. L. Benabid, “Deep brain stimulation for Parkinson’s disease,” Curr. Opin. Neurobiol., vol. 13, no. 6, pp. 696–706, Dec. 2003. https://doi.org/10.1016/j.conb.2003.11.001
dc.relation/*ref*/C. C. McIntyre; S. Mori; D. L. Sherman; N. V. Thakor; J. L. Vitek, “Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus,” Clin. Neurophysiol., vol. 115, no. 3, pp. 589–595, Mar. 2004. https://doi.org/10.1016/j.clinph.2003.10.033
dc.relation/*ref*/A. Husch; M. V. Petersen; P. Gemmar; J. Goncalves; F. Hertel, “PaCER - A fully automated method for electrode trajectory and contact reconstruction in deep brain stimulation,” NeuroImage Clin., vol. 17, pp. 80–89, Oct. 2017. https://doi.org/10.1016/j.nicl.2017.10.004
dc.relation/*ref*/W. D. Hutchison et al., “Neurophysiological Identification of the Subthalamic nucleus in Surgery for Parkinson ’ s Disease,” Ann. Neurol., vol. 44, no. 4, pp. 622–628, Oct. 2004. https://doi.org/10.1002/ana.410440407
dc.relation/*ref*/M. S. Okun et al., “Management of Referred Deep Brain Stimulation Failures A Retrospective Analysis From 2 Movement Disorders Centers,” Arch. Neurol., vol. 62, no. 8, pp. 1250-1255, Aug. 2005. https://doi.org/10.1001/archneur.62.8.noc40425
dc.relation/*ref*/A. Berney et al., “Effect on mood of subthalamic DBS for Parkinson’s disease A consecutive series of 24 patients,” Neurology, vol. 59, no. 9, pp. 1427 LP – 1429, Nov. 2002. https://doi.org/10.1212/01.WNL.0000032756.14298.18
dc.relation/*ref*/J. L. Houeto et al.,“Subthalamic Stimulation in Parkinson Disease: Behavior and Social Adaptation,” Arch Neurol, vol. 63, no. 8, pp. 1090–1095, Aug. 2006. https://doi.org/10.1001/archneur.63.8.1090
dc.relation/*ref*/K. P. Michmizos; P. Frangou; P. Stathis; D. Sakas; K. S. Nikita, “Beta-band frequency peaks inside the subthalamic nucleus as a biomarker for motor improvement after deep brain stimulation in parkinson’s disease,” IEEE J. Biomed. Heal. Informatics, vol. 19, no. 1, pp. 174–180, Jan. 2015. https://doi.org/10.1109/jbhi.2014.2344102
dc.relation/*ref*/H. Bronte-Stewart; C. Barberini; M. M. Koop; B. C. Hill; J. M. Henderson; B. Wingeier, “The STN beta-band profile in Parkinson’s disease is stationary and shows prolonged attenuation after deep brain stimulation,” Exp. Neurol., vol. 215, no. 1, pp. 20–28, Jan. 2009. https://doi.org/10.1016/j.expneurol.2008.09.008
dc.relation/*ref*/M. C. Rodriguez-Oroz et al., “The subthalamic nucleus in Parkinson disease: somatotopic organization and physiological characteristics,” Brain, vol. 124, no. 9, pp. 1777–1790, Sep. 2001. https://doi.org/10.1093/brain/124.9.1777
dc.relation/*ref*/A. A. Kühn; T. Trottenberg; A. Kivi; A. Kupsch; G. H. Schneider; P. Brown, “The relationship between local field potential and neuronal discharge in the subthalamic nucleus of patients with Parkinson’s disease,” Exp. Neurol., vol. 194, no. 1, pp. 212–220, Jul. 2005. https://doi.org/10.1016/j.expneurol.2005.02.010
dc.relation/*ref*/M. Beudel; P. Brown, “Adaptive deep brain stimulation in Parkinson’s disease,” Parkinsonism Relat. Disord., vol. 22, no. 1, pp. S123–S126, Jan. 2016. https://doi.org/10.1016/j.parkreldis.2015.09.028
dc.relation/*ref*/S. Little; P. Brown, “What brain signals are suitable for feedback controzl of deep brain stimulation in Parkinson’s disease?,” Ann. N. Y. Acad. Sci., vol. 1265, no. 1, pp. 9–24, Jul. 2012. https://doi.org/10.1111/j.1749-6632.2012.06650.x
dc.relation/*ref*/D. Basha; J. O. Dostrovsky; A. L. Lopez Rios; M. Hodaie, A. M. Lozano; W. D. Hutchison, “Beta oscillatory neurons in the motor thalamus of movement disorder and pain patients,” Exp. Neurol., vol. 261, pp. 782–790, Nov. 2014. https://doi.org/10.1016/j.expneurol.2014.08.024
dc.relation/*ref*/D. Valsky et al., “Stop! border ahead: Automatic detection of subthalamic exit during deep brain stimulation surgery,” Mov. Disord., vol. 32, no. 1, pp. 70–79, Oct. 2016. https://doi.org/10.1002/mds.26806
dc.relation/*ref*/M. Weinberger; W. D. Hutchison; A. M. Lozano; M. Hodaie; J. O. Dostrovsky, “Increased gamma oscillatory activity in the subthalamic nucleus during tremor in Parkinson’s disease patients.,” J. Neurophysiol., vol. 101, no. 2, pp. 789–802, Feb. 2009. https://doi.org/10.1152/jn.90837.2008
dc.relation/*ref*/G. Foffani; G. Ardolino; M. Egidi; E. Caputo; B. Bossi; A. Priori, “Subthalamic oscillatory activities at beta or higher frequency do not change after high-frequency DBS in Parkinson’s disease.,” Brain Res. Bull., vol. 69, no. 2, pp. 123–130, Mar. 2006. https://doi.org/10.1016/j.brainresbull.2005.11.012
dc.relation/*ref*/C. C. Chen et al., “Intra-operative recordings of local field potentials can help localize the subthalamic nucleus in Parkinson’s disease surgery.,” Exp. Neurol., vol. 198, no. 1, pp. 214–221, Mar. 2006. https://doi.org/10.1016/j.expneurol.2005.11.019
dc.relation/*ref*/F. Alonso-Frech et al., “Slow oscillatory activity and levodopa-induced dyskinesias in Parkinson’s disease,” Brain, vol. 129, no. 7, pp. 1748–1757, Jul. 2006. https://doi.org/10.1093/brain/awl103
dc.relation/*ref*/A. I. Yang; X. N. Vanegas; C. Lungu; K. A. Zaghloul, “Beta-Coupled High-Frequency Activity and Beta-Locked Neuronal Spiking in the Subthalamic Nucleus of Parkinson ’ s Disease,” Journal of Neuroscience, vol. 34, no. 38, pp. 12816–12827, Sep. 2014. https://doi.org/10.1523/JNEUROSCI.1895-14.2014
dc.relation/*ref*/K. P. Burnham; D. R. Anderson, “Multimodel inference: Understanding AIC and BIC in model selection,” Sociol. Methods Res., vol. 33, no. 2, pp. 261–304, Nov. 2004. https://doi.org/10.1177/0049124104268644
dc.relation/*ref*/S. E. Valderrama-Hincapié; A. M. Hernández; F. Sánchez; S. Roldán-Vasco; A. L. López-Ríos; W. D. Hutchison, “Optimization of spectral analysis of electrophysiological recordings of the subthalamic nucleus in Parkinson’s disease: A retrospective study,” in VII Latin American Congress on Biomedical Engineering CLAIB 2016, Bucaramanga. 2016, pp. 300–303. https://doi.org/10.1007/978-981-10-4086-3_76
dc.relation/*ref*/S. Kara; S. Kemaloǧlu; N. Erdoǧan, “Comparison of fast Fourier transformation and autoregressive modelling as a diagnostic tool in analysis of lower extremity venous signals,” Comput. Biol. Med., vol. 36, no. 5, pp. 484–494, May. 2006. https://doi.org/10.1016/j.compbiomed.2005.03.001
dc.relation/*ref*/J. G. Proakis; D. G. Manolakis, Digital signal processing: principles algorithms and applications. Prentice Hall, 3th edition, 2007. Available: https://engineering.purdue.edu/~ee538/DSP_Text_3rdEdition.pdf
dc.relation/*ref*/P. A. Starr; A. J. Martin; J. L. Ostrem; P. Talke; N. Levesque; P. S. Larson, “Subthalamic nucleus deep brain stimulator placement using high-field interventional magnetic resonance imaging and a skull-mounted aiming device: technique and application accuracy,” J. Neurosurg., vol. 112, no. 3, pp. 479–490, Mar. 2010. https://doi.org/10.3171/2009.6.JNS081161
dc.relation/*ref*/K. Shahlaie; P. S. Larson; P. A. Starr, “Intraoperative Computed Tomography for Deep Brain Stimulation Surgery: Technique and Accuracy Assessment,” Oper. Neurosurg., vol. 68, no. suppl_1, pp. ons114–ons124, ons114–ons124, pp. Mar. 2011. https://doi.org/10.1227/NEU.0b013e31820781bc
dc.relation/*ref*/K. Burchiel; S. McCartney; A. Lee; A. Raslan, “Accuracy of deep brain stimulation electrode placement using intraoperative computed tomography without microelectrode recording,” Neurosurgery, vol. 119, no. 2, pp. 301-306, Aug. 2013. https://doi.org/10.3171/2013.4.JNS122324
dc.relation/*ref*/R. B. Kochanski; S. Bus; G. Pal; L. V Metman; S. Sani, “Optimization of Microelectrode Recording in DBS Surgery Using Intraoperative Computed Tomography,” World Neurosurg. Vol. 103, pp. 168-173, Jul. 2017. https://doi.org/10.1016/j.wneu.2017.04.003
dc.relation/*ref*/B. Brahimaj; R. B. Kochanski; S. Sani, “Microelectrode accuracy in deep brain stimulation surgery,” J. Clin. Neurosci., vol. 50, pp. 58–61, Apr. 2018. https://doi.org/10.1016/j.jocn.2018.01.020
dc.relation/*ref*/K. Kostoglou; K. P. Michmizos; P. Stathis; D. Sakas; K. S. Nikita; G. D. Mitsis, “Classification and Prediction of Clinical Improvement in Deep Brain Stimulation from Intraoperative Microelectrode Recordings,” IEEE Trans. Biomed. Eng., vol. 64, no. 5, pp. 1123–1130, May. 2017. https://doi.org/10.1109/TBME.2016.2591827
dc.relation/*ref*/K. R. Wan; T. Maszczyk; A. A. Q. See; J. Dauwels; N. K. K. King, “A review on microelectrode recording selection of features for machine learning in deep brain stimulation surgery for Parkinson’s disease,” Clin. Neurophysiol., vol. 130, no. 1, pp. 145–154, Jan. 2019. https://doi.org/10.1016/j.clinph.2018.09.018
dc.relation/*ref*/S. Wong; G. H. Baltuch; J. L. Jaggi, S. F. Danish, “Functional localization and visualization of the subthalamic nucleus from microelectrode recordings acquired during DBS surgery with unsupervised machine learning,” J. Neural Eng., vol. 6, no. 2, pp. 1–11, Apr. 2009. Available: https://pubmed.ncbi.nlm.nih.gov/19287077/
dc.relation/*ref*/A. Zaidel; A. Spivak; L. Shpigelman; H. Bergman; Z. Israel, “Delimiting subterritories of the human subthalamic nucleus by means of microelectrode recordings and a Hidden Markov Model,” Mov. Disord., vol. 24, no. 12, pp. 1785–1793, Sep. 2009. https://doi.org/10.1002/mds.22674
dc.relation/*ref*/W. Chaovalitwongse; Y. Jeong; M. K. Jeong; S. Danish; S. Wong, “Pattern recognition approaches for identifying subcortical targets during deep brain stimulation surgery,” IEEE Intell. Syst., vol. 26, no. 5, pp. 54–63, Sep. 2011. https://doi.org/10.1109/MIS.2011.56
dc.relation/*ref*/H. D. Vargas Cardona et al., “NEUROZONE : On-line Recognition of Brain Structures in Stereotactic Surgery - Application to Parkinson ’ s Disease,” in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society., San Diego. 2012. http://dx.doi.org/10.1109/EMBC.2012.6346403
dc.relation/*ref*/L. Schiaffino et al., “STN area detection using K-NN classifiers for MER recordings in Parkinson patients during neurostimulator implant surgery,” in J. Phys. Conf. Ser., vol. 705, 2016. https://doi.org/10.1088/1742-6596/705/1/012050
dc.rightsCopyright (c) 2020 TecnoLógicasen-US
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0en-US
dc.sourceTecnoLógicas; Vol. 23 No. 49 (2020); 11-32en-US
dc.sourceTecnoLógicas; Vol. 23 Núm. 49 (2020); 11-32es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectDeep Brain Stimulationen-US
dc.subjectmicroelectrode recordingen-US
dc.subjectbiomedical signal processingen-US
dc.subjectParkinson’s diseaseen-US
dc.subjectsubthalamic nucleusen-US
dc.subjectEstimulación Cerebral Profundaes-ES
dc.subjectregistro con micro-electrodoses-ES
dc.subjectprocesamiento de señales biomédicases-ES
dc.subjectenfermedad de Párkinsones-ES
dc.subjectnúcleo subtalámicoes-ES
dc.titleBeta, gamma and High-Frequency Oscillation characterization for targeting in Deep Brain Stimulation proceduresen-US
dc.titleCaracterización beta, gamma y de oscilaciones de alta frecuencia para localización de diana en procedimientos de Estimulación Cerebral Profundaes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem