Mostrar el registro sencillo del ítem

Caracterización de andamios de seda fibroína electrohilados para ingeniería de tejidos óseo: una revisión

dc.creatorMejía Suaza, Mónica Liliana
dc.creatorMoncada, Maria Elena
dc.creatorOssa-Orozco , Claudia Patricia
dc.date2020-09-15
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1573
dc.identifier10.22430/22565337.1573
dc.descriptionSilk Fibroin (SF) is a natural polymer obtained from the Bombyx mori silkworm. It has been used in bone tissue engineering thanks to its favorable biocompatibility, adhesion, low biodegradability, and tensile strength properties. Electrospinning is a technique to develop nanofibers. It uses high voltages to convert polymer solutions into porous nanostructured scaffolds with a good ratio between superficial area and volume. In this paper, we examine the effect of the electrospinning parameters on fiber morphology once the spun fibers have been treated. In addition, we present different physicochemical characterizations of electrospun SF scaffolds such as their morphology (via Scanning Electron Microscopic—SEM—), crystalline structure (via Fourier Transform Infrared—FTIR—spectroscopy and X-Ray Diffraction—XRD—), thermal characteristics (via Differential Scanning Calorimetry—DSC—and Thermogravimetric Analysis—TGA—), and mechanical properties (tensile strength). Finally, we discuss the potential applications and impacts of electrospun SF in bone tissue engineering and future research trends.en-US
dc.descriptionLa fibroína de seda es un polímero natural obtenido del gusano Bombyx mori, que se ha utilizado en la ingeniería de tejidos óseos debido a sus propiedades de biocompatibilidad, adhesión, baja biodegradabilidad y resistencia a la tracción. El electrohilado es una técnica para desarrollar nanofibras, utiliza altos voltajes para convertir soluciones de polímeros en andamios nanoestructurados, con porosidad, buena relación entre el área superficial y el volumen. En esta revisión examinamos los parámetros de electrohilado en la morfología de la fibra, después del tratamiento de las fibras hiladas. Además, presentamos diferentes caracterizaciones fisicoquímicas de andamios de fibroína de seda electrohilada como morfológico (microscopia electrónica de barrido - SEM), estructura cristalina (espectroscopia de transformada infrarroja de Fourier - FTIR, difracción de rayos X- XRD), análisis térmico (calorimetría diferencial de barrido- DSC, análisis termogravimétrico - TGA) y propiedades mecánicas (resistencia a la tracción). Finalmente, presentamos una discusión concerniente a las potenciales aplicaciones e impactos de la fibroína de seda electrohilada en la ingeniería del tejido óseo y las tendencias futuras.es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.formattext/html
dc.languageeng
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1573/1700
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1573/1772
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1573/1794
dc.relation/*ref*/F. Mottaghitalab; H. Hosseinkhani; M. A. Shokrgozar; C. Mao; M. Yang; M. Farokhi, “Silk as a potential candidate for bone tissue engineering,” J. Control. Release, vol. 215, pp. 112–128, Oct. 2015. https://doi.org/10.1016/j.jconrel.2015.07.031
dc.relation/*ref*/M. Farokhi et al., “Silk fibroin/hydroxyapatite composites for bone tissue engineering,” Biotechnol. Adv., vol. 36, no. 1, pp. 68–91, Jan. 2018. https://doi.org/10.1016/j.biotechadv.2017.10.001
dc.relation/*ref*/N. Sultana, Biodegradable Polymer Based Scaffolds for Bone Tissue Engineering. Springer, 2013. https://doi.org/10.1007/978-3-642-34802-0
dc.relation/*ref*/L. Li et al., “Functionalized cell-free scaffolds for bone defect repair inspired by self-healing of bone fractures: A review and new perspectives,” Mater. Sci. Eng. C, vol. 98. pp. 1241-1251, May. 2019. https://doi.org/10.1016/j.msec.2019.01.075
dc.relation/*ref*/Q. Chen; C. Zhu; G. A. Thouas, “Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites,” Prog. Biomater., vol. 1, no. 1, Sep. 2012. https://doi.org/10.1186/2194-0517-1-2
dc.relation/*ref*/H. Yi; F. Ur Rehman; C. Zhao; B. Liu; N. He, “Recent advances in nano scaffolds for bone repair,” Bone Res., vol. 4, no. 16050, pp. 1- 11, Dec. 2016. https://doi.org/10.1038/boneres.2016.50
dc.relation/*ref*/M. Maksimović, “The roles of nanotechnology and internet of nano things in healthcare transformation,” TecnoLógicas, vol. 20, no. 40, pp. 139–153, Sep. 2017. https://doi.org/10.22430/22565337.720
dc.relation/*ref*/Y. Liu; J. Lim; S.-H. Teoh, “Review: Development of clinically relevant scaffolds for vascularised bone tissue engineering,” Biotechnol. Adv., vol. 31, no. 5, pp. 688–705, Sep. 2013. https://doi.org/10.1016/j.biotechadv.2012.10.003
dc.relation/*ref*/K. A. Gross; L. M. Rodríguez-Lorenzo, “Biodegradable composite scaffolds with an interconnected spherical network for bone tissue engineering,” Biomaterials, vol. 25, no. 20, pp. 4955–4962,. Sep. 2004. https://doi.org/10.1016/j.biomaterials.2004.01.046
dc.relation/*ref*/V. Olivier; N. Faucheux; P. Hardouin, “Biomaterial challenges and approaches to stem cell use in bone reconstructive surgery,” Drug Discov. Today, vol. 9, no. 18, pp. 803–811, Sep. 2004. https://doi.org/10.1016/S1359-6446(04)03222-2
dc.relation/*ref*/S. Sánchez-Salcedo; A. Nieto; M. Vallet-Regí; “Hydroxyapatite/β-tricalcium hosphate/agarose macroporous scaffolds for bone tissue engineering,” Chem. Eng. J., vol. 137, no. 1, pp. 62–71, Mar. 2008. https://doi.org/10.1016/j.cej.2007.09.011
dc.relation/*ref*/M. Wang, Surface Modification of Biomaterials and Tissue Engineering Scaffolds for Enhanced Osteoconductivity, in 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006, vol. 15. Springer, 2007. https://doi.org/10.1007/978-3-540-68017-8
dc.relation/*ref*/J. A. Peres; T. Lamano, “Strategies for stimulation of new bone formation: a critical review,” Braz. Dent. J., vol. 22, no. 6, pp. 443–448, Oct. 2011. https://doi.org/10.1590/S0103-64402011000600001
dc.relation/*ref*/B. F. Ricciardi; M. P. Bostrom, “Bone graft substitutes: Claims and credibility,” Semin. Arthroplasty, vol. 24, no. 2, pp. 119–123, Jun. 2013. https://doi.org/10.1053/j.sart.2013.07.002
dc.relation/*ref*/M. N. Rahaman et al., “Bioactive glass in tissue engineering,” Acta Biomater., vol. 7, no. 6, pp. 2355–2373, Jun. 2011. https://doi.org/10.1016/j.actbio.2011.03.016
dc.relation/*ref*/S. Samavedi; A. R. Whittington; A. S. Goldstein, “Calcium phosphate ceramics in bone tissue engineering: A review of properties and their influence on cell behavior,” Acta Biomater., vol. 9, no. 9, pp. 8037–8045, Sep. 2013. https://doi.org/10.1016/j.actbio.2013.06.014
dc.relation/*ref*/Y. Kang; K. Kim; Y. Seol; S. Rhee, “Evaluations of osteogenic and osteoconductive properties of a non-woven silica gel fabric made by the electrospinning method,” Acta Biomater., vol. 5, no. 1, pp. 462–469, Jan. 2009. https://doi.org/10.1016/j.actbio.2008.07.004
dc.relation/*ref*/X. Qu et al., “The effect of oxygen plasma pretreatment and incubation in modified simulated body fluids on the formation of bone-like apatite on poly(lactide-co-glycolide) (70/30),” Biomaterials, vol. 28, no. 1, pp. 9–18, Jan. 2007. https://doi.org/10.1016/j.biomaterials.2006.08.024
dc.relation/*ref*/X. Fu; M. J. Jenkins; G. Sun; I. Bertoti; H. Dong, “Characterization of active screen plasma modified polyurethane surfaces,” Surf. Coatings Technol., vol. 206, no. 23, pp. 4799–4807, Jul. 2012. https://doi.org/10.1016/j.surfcoat.2012.04.051
dc.relation/*ref*/G. Kumar; M. S. Waters; T. M. Farooque; M. F. Young; C. G. Simon, “Freeform fabricated scaffolds with roughened struts that enhance both stem cell proliferation and differentiation by controlling cell shape,” Biomaterials, vol. 33, no. 16, pp. 4022–4030, Jun. 2012. https://doi.org/10.1016/j.biomaterials.2012.02.048
dc.relation/*ref*/A. Mata; E. J. Kim; C. A. Boehm; A. J. Fleischman; G. F. Muschler; S. Roy, “A three-dimensional scaffold with precise micro-architecture and surface micro-textures,” Biomaterials, vol. 30, no. 27, pp. 4610–4617, Sep. 2009. https://doi.org/10.1016/j.biomaterials.2009.05.023
dc.relation/*ref*/S. F. El-Amin et al., “Extracellular matrix production by human osteoblasts cultured on biodegradable polymers applicable for tissue engineering,” Biomaterials, vol. 24, no. 7, pp. 1213–1221, Mar. 2003. https://doi.org/10.1016/S0142-9612(02)00451-9
dc.relation/*ref*/S. Weeks; A. Kulkarni; H. Smith; C. Whittall; Y. Yang; J. Middleton, “The effects of chemokine, adhesion and extracellular matrix molecules on binding of mesenchymal stromal cells to poly(l-lactic acid),” Cytotherapy, vol. 14, no. 9, pp. 1080–1088, Sep. 2012. https://doi.org/10.3109/14653249.2012.700704
dc.relation/*ref*/N. Okutan; P. Terzi; F. Altay, “Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers,” Food Hydrocoll., vol. 39, pp. 19–26, Aug. 2014. https://doi.org/10.1016/j.foodhyd.2013.12.022
dc.relation/*ref*/S. Fakirov., Nano-size Polymers. Springer, 2016. https://doi.org/10.1007/978-3-319-39715-3
dc.relation/*ref*/B. Sun et al., “Advances in three-dimensional nanofibrous macrostructures via electrospinning,” Prog. Polym. Sci., vol. 39, no. 5, pp. 862–890, May 2014. https://doi.org/10.1016/j.progpolymsci.2013.06.002
dc.relation/*ref*/S. Y. Park; C. S. Ki; Y. H. Park; H. M. Jung; K. M. Woo; H. J. Kim, “Electrospun Silk Fibroin Scaffolds with Macropores for Bone Regeneration: An In Vitro and In Vivo Study,” Tissue Eng. Part A, vol. 16, no. 4, pp. 1271–1279, Jan. 2010. https://doi.org/10.1089/ten.tea.2009.0328
dc.relation/*ref*/E. J. Chong et al., “Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution,” Acta Biomater., vol. 3, no. 3, pp. 321–330, May. 2007. https://doi.org/10.1016/j.actbio.2007.01.002
dc.relation/*ref*/D. Gaviria Arias; L. C. Caballero Mendez, “Uso de biomateriales a partir de la fibroína de la seda de gusano de seda (Bombyx mori L.) Para procesos de medicina regenerativa basada en ingeniería de tejidos,” Rev. Médica Risaralda, vol. 21, no. 1, pp. 38–47, 2015. Available: https://revistas.utp.edu.co/index.php/revistamedica/article/view/9411
dc.relation/*ref*/D. Naskar; A. K. Ghosh; M. Manda; P. Das; S. K. Nandi; S. C. Kundu, “Dual growth factor loaded nonmulberry silk fibroin/carbon nanofiber composite 3D scaffolds for in vitro and in vivo bone regeneration,” Biomaterials, vol. 136, pp. 67–85, Aug. 2017. https://doi.org/10.1016/j.biomaterials.2017.05.014
dc.relation/*ref*/D. D. Zhang; L. X. Dai, “Preparation and characterization of electrospun poly(vinyl alcohol)/silk fibroin nanofibers as a potential drug delivery system,” Adv. Mater. Res., vol. 709, pp. 215–220, Jun. 2013. https://doi.org/10.4028/www.scientific.net/AMR.709.215
dc.relation/*ref*/W. L. Li; J. J. Wang; L. X. Dai, “Preparation and Antibacterial Activity of Poly (vinyl Alcohol)/Silk Fibroin Composite Nanofibers Containing Silver Nanoparticles,” Adv. Mater. Res., vol. 175–176, pp. 105–109, 2011. https://doi.org/10.4028/www.scientific.net/amr.175-176.105
dc.relation/*ref*/M. M. Pillai et al., “Silk–PVA Hybrid Nanofibrous Scaffolds for Enhanced Primary Human Meniscal Cell Proliferation,” J. Membr. Biol., vol. 249, no. 6, pp. 813–822, 2016. https://doi.org/10.1007/s00232-016-9932-z
dc.relation/*ref*/J. Jin; Y. Liu; C. Qin; J. Wang; L. Dai; K. Yamaura, “Electrospinning of regenerated silk fibroin and polyvinyl alcohol blended solution,” J. Polym. Eng., vol. 30, no. 3–4, pp. 149–160, 2010. https://doi.org/10.1515/POLYENG.2010.30.3-4.149
dc.relation/*ref*/M. M. Kalani; J. Nourmohammadi; B. Negahdari; A. Rahimi; S. A. Sell, “Electrospun core-sheath poly(vinyl alcohol)/silk fibroin nanofibers with Rosuvastatin release functionality for enhancing osteogenesis of human adipose-derived stem cells,” Mater. Sci. Eng. C, vol. 99, pp. 129–139, Jun. 2019. https://doi.org/10.1016/j.msec.2019.01.100
dc.relation/*ref*/H. J. Cho; Y. J. Yoo; J. W. Kim; Y. H. Park; D. G. Bae; I. C. Um, “Effect of molecular weight and storage time on the wet- and electro-spinning of regenerated silk fibroin,” Polym. Degrad. Stab., vol. 97, no. 6, pp. 1060–1066, Jun. 2012. https://doi.org/10.1016/j.polymdegradstab.2012.03.007
dc.relation/*ref*/S. Calamak; E. A. Aksoy; C. Erdogdu; M. Sagıroglu; K. Ulubayram, “Silver nanoparticle containing silk fibroin bionanotextiles,” J. Nanoparticle Res., vol. 17, no. 2, Feb. 2015. https://doi.org/10.1007/s11051-015-2895-7
dc.relation/*ref*/J. Zhu; H. Shao; X. Hu, “Morphology and structure of electrospun mats from regenerated silk fibroin aqueous solutions with adjusting pH,” Int. J. Biol. Macromol., vol. 41, no. 4, pp. 469–474, Oct. 2007. https://doi.org/10.1016/j.ijbiomac.2007.06.006
dc.relation/*ref*/S. Sukigara; M. Gandhi; J. Ayutsede; M. Micklus; F. Ko, “Regeneration of Bombyx mori silk by electrospinning—part 1: processing parameters and geometric properties,” Polymer., vol. 44, no. 19, pp. 5721–5727, Sep. 2003. https://doi.org/10.1016/S0032-3861(03)00532-9
dc.relation/*ref*/S. Sohn; S. P. Gido, “Wet-Spinning of Osmotically Stressed Silk Fibroin,” Biomacromolecules, vol. 10, no. 8, pp. 2086–2091, Aug. 2009. https://doi.org/10.1021/bm900169z
dc.relation/*ref*/F. Zhang et al., “Mechanisms and Control of Silk-Based Electrospinning,” Biomacromolecules, vol. 13, no. 3, pp. 798–804, Feb. 2012. https://doi.org/10.1021/bm201719s
dc.relation/*ref*/C. Meechaisue et al., “Preparation of electrospun silk fibroin fiber mats as bone scaffolds: a preliminary study,” Biomed. Mater., vol. 2, no. 3, pp. 181–188, Sep. 2007. https://doi.org/10.1088/1748-6041/2/3/003
dc.relation/*ref*/J. Ayutsede; M. Gandhi; S. Sukigara; M. Micklus; H.-E. Chen; F. Ko, “Regeneration of Bombyx mori silk by electrospinning. Part 3: characterization of electrospun nonwoven mat,” Polymer., vol. 46, no. 5, pp. 1625–1634, Feb. 2005. https://doi.org/10.1016/j.polymer.2004.11.029
dc.relation/*ref*/S. H. Kim; Y. S. Nam; T. S. Lee; W. H. Park, “Silk Fibroin Nanofiber. Electrospinning, Properties, and Structure,” Polym. J., vol. 35, pp. 185–190, Feb. 2003. https://doi.org/10.1295/polymj.35.185
dc.relation/*ref*/J. H. Kim et al., “Preparation and in vivo degradation of controlled biodegradability of electrospun silk fibroin nanofiber mats,” J. Biomed. Mater. Res. Part A, vol. 100A, no. 12, pp. 3287–3295, Dec. 2012. https://doi.org/10.1002/jbm.a.34274
dc.relation/*ref*/C. S. Ki et al., “Development of 3-D nanofibrous fibroin scaffold with high porosity by electrospinning: implications for bone regeneration,” Biotechnol. Lett., vol. 30, no. 3, pp. 405–410, Mar. 2008. https://doi.org/10.1007/s10529-007-9581-5
dc.relation/*ref*/N. Haghighipour; Z. Hadisi; J. Nourmohammadi; S. Heidari, “How direct electrospinning in methanol bath affects the physico-chemical and biological properties of silk fibroin nanofibrous scaffolds,” Micro Nano Lett., vol. 11, no. 9, pp. 514–517, Sep. 2016. https://doi.org/10.1049/mnl.2016.0301
dc.relation/*ref*/K.-H. Kim et al., “Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration,” J. Biotechnol., vol. 120, no. 3, pp. 327–339, Nov. 2005. https://doi.org/10.1016/j.jbiotec.2005.06.033
dc.relation/*ref*/N. Panda; A. Bissoyi; K. Pramanik; A. Biswas, “Development of novel electrospun nanofibrous scaffold from P. ricini and A. mylitta silk fibroin blend with improved surface and biological properties,” Mater. Sci. Eng. C, vol. 48, pp. 521–532, Mar. 2015. https://doi.org/10.1016/j.msec.2014.12.010
dc.relation/*ref*/C. Li; C. Vepari; H.-J. Jin; H. J. Kim; D. L. Kaplan, “Electrospun silk-BMP-2 scaffolds for bone tissue engineering,” Biomaterials, vol. 27, no. 16, pp. 3115–3124, Jun. 2006. https://doi.org/10.1016/j.biomaterials.2006.01.022
dc.relation/*ref*/R. R. Jose; R. Elia; M. A. Firpo; D. L. Kaplan; R. A. Peattie, “Seamless, axially aligned, fiber tubes, meshes, microbundles and gradient biomaterial constructs,” J. Mater. Sci. Mater. Med., vol. 23, no. 11, pp. 2679–2695, Nov. 2012. https://doi.org/10.1007/s10856-012-4739-7
dc.relation/*ref*/R. Serôdio et al., “Ultrasound sonication prior to electrospinning tailors silk fibroin/PEO membranes for periodontal regeneration,” Mater. Sci. Eng. C, vol. 98, no. 2018, pp. 969–981, May. 2019. https://doi.org/10.1016/j.msec.2019.01.055
dc.relation/*ref*/Y. Kishimoto; H. Morikawa; S. Yamanaka; Y. Tamada, “Electrospinning of silk fibroin from all aqueous solution at low concentration,” Mater. Sci. Eng. C, vol. 73, pp. 498–506, Apr. 2017. https://doi.org/10.1016/j.msec.2016.12.113
dc.relation/*ref*/C. Li; H.-J. Jin; G. D. Botsaris; D. L. Kaplan, “Silk apatite composites from electrospun fibers,” J. Mater. Res., vol. 20, no. 12, pp. 3374–3384, Dec. 2005. https://doi.org/10.1557/jmr.2005.0425
dc.relation/*ref*/J. Song et al., “Electrospun Nanofibrous Silk Fibroin Membranes Containing Gelatin Nanospheres for Controlled Delivery of Biomolecules,” Adv. Healthc. Mater., vol. 6, no. 14, p. 1700014, Jul. 2017. https://doi.org/10.1002/adhm.201700014
dc.relation/*ref*/M. Gandhi; H. Yang; L. Shor; F. Ko, “Post-spinning modification of electrospun nanofiber nanocomposite from Bombyx mori silk and carbon nanotubes,” Polymer., vol. 50, no. 8, pp. 1918–1924, Apr. 2009. https://doi.org/10.1016/j.polymer.2009.02.022
dc.relation/*ref*/M. Gholipourmalekabadi et al., “Optimization of nanofibrous silk fibroin scaffold as a delivery system for bone marrow adherent cells: in vitro and in vivo studies,” Biotechnol. Appl. Biochem., vol. 62, no. 6, pp. 785–794, Nov. 2015. https://doi.org/10.1002/bab.1324
dc.relation/*ref*/K. Ohgo; C. Zhao; M. Kobayashi; T. Asakura, “Preparation of non-woven nanofibers of Bombyx mori silk, Samia cynthia ricini silk and recombinant hybrid silk with electrospinning method,” Polymer., vol. 44, no. 3, pp. 841–846, Jan. 2003. https://doi.org/10.1016/S0032-3861(02)00819-4
dc.relation/*ref*/C. M. Srivastava; R. Purwar; A. P. Gupta, “Enhanced potential of biomimetic, silver nanoparticles functionalized Antheraea mylitta (tasar) silk fibroin nanofibrous mats for skin tissue engineering,” Int. J. Biol. Macromol., vol. 130, pp. 437–453, Jun. 2019. https://doi.org/10.1016/j.ijbiomac.2018.12.255
dc.relation/*ref*/B. Niu; B. Li; Y. Gu; X. Shen; Y. Liu; L. Chen, “In vitro evaluation of electrospun silk fibroin/nano-hydroxyapatite/BMP-2 scaffolds for bone regeneration,” J. Biomater. Sci. Polym. Ed., vol. 28, no. 3, pp. 257–270, Feb. 2017. https://doi.org/10.1080/09205063.2016.1262163
dc.relation/*ref*/Z. Hadisi; J. Nourmohammadi; J. Mohammadi, “Composite of porous starch-silk fibroin nanofiber-calcium phosphate for bone regeneration,” Ceram. Int., vol. 41, no. 9, pp. 10745–10754, Nov. 2015. https://doi.org/10.1016/j.ceramint.2015.05.010
dc.relation/*ref*/K. Wei et al., “Fabrication of nano-hydroxyapatite on electrospun silk fibroin nanofiber and their effects in osteoblastic behavior,” J. Biomed. Mater. Res. Part A, vol. 97A, no. 3, pp. 272–280, Jun. 2011. https://doi.org/10.1002/jbm.a.33054
dc.relation/*ref*/H. Ding et al., “Establishment of 3D culture and induction of osteogenic differentiation of pre-osteoblasts using wet-collected aligned scaffolds,” Mater. Sci. Eng. C, vol. 71, pp. 222–230, Feb. 2017. https://doi.org/10.1016/j.msec.2016.10.002
dc.relation/*ref*/G. Griffanti; M. James-Bhasin; I. Donelli; G. Freddi; S. N. Nazhat, “Functionalization of silk fibroin through anionic fibroin derived polypeptides,” Biomed. Mater., vol. 14, no. 1, Nov. 2018. Available: https://pubmed.ncbi.nlm.nih.gov/30412470/
dc.relation/*ref*/S. Çalamak; C. Erdoğdu; M. Özalp; K. Ulubayram, “Silk fibroin based antibacterial bionanotextiles as wound dressing materials,” Mater. Sci. Eng. C, vol. 43, pp. 11–20, Oct. 2014. https://doi.org/10.1016/j.msec.2014.07.001
dc.relation/*ref*/R. Liu; J. Ming; H. Zhang; B. Zuo, “EDC/NHS crosslinked electrospun regenerated tussah silk fibroin nanofiber mats,” Fibers Polym., vol. 13, no. 5, pp. 613–617, May 2012. https://doi.org/10.1007/s12221-012-0613-y
dc.relation/*ref*/S. Mohammadzadehmoghadam; Y. Dong, “Fabrication and Characterization of Electrospun Silk Fibroin/Gelatin Scaffolds Crosslinked With Glutaraldehyde Vapor,” Front. Mater., vol. 6, no. 91, May, pp. 1–12, May. 2019. https://doi.org/10.3389/fmats.2019.00091
dc.relation/*ref*/A. Gaviria; S. Sanchez-Diaz; A. Ríos; M. S. Peresin; A. Restrepo-Osorio, “Silk fibroin from silk fibrous waste: characterization and electrospinning,” IOP Conf. Ser. Mater. Sci. Eng., vol. 254, no. 10, p. 102005, Oct. 2017. https://doi.org/10.1088/1757-899X/254/10/102005
dc.relation/*ref*/J. Zhou; C. Cao; X. Ma, “A novel three-dimensional tubular scaffold prepared from silk fibroin by electrospinning,” Int. J. Biol. Macromol., vol. 45, no. 5, pp. 504–510, Dec. 2009. https://doi.org/10.1016/j.ijbiomac.2009.09.006
dc.relation/*ref*/M. Andiyappan; S. Sundaramoorthy; P. Vidyasekar; N. T. Srinivasan; R. S. Verma, “Characterization of electrospun fibrous scaffold produced from Indian eri silk fibroin,” Int. J. Mater. Res., vol. 104, no. 5, pp. 498–506, May. 2013. https://doi.org/10.3139/146.110888
dc.relation/*ref*/I. C. Um; C. S. Ki; H. Kweon; K. G. Lee; D. W. Ihm; Y. H. Park, “Wet spinning of silk polymer: II. Effect of drawing on the structural characteristics and properties of filament,” Int. J. Biol. Macromol., vol. 34, no. 1–2, pp. 107–119, Apr. 2004. https://doi.org/10.1016/j.ijbiomac.2004.03.011
dc.relation/*ref*/J. S. Ko; K. H. Lee; D. G. Bae; I. C. Um, “Miscibility, structural characteristics, and thermal behavior of wet spun regenerated silk fibroin/nylon 6 blend filaments,” Fibers Polym., vol. 11, no. 1, pp. 14–20, Feb. 2010. https://doi.org/10.1007/s12221-010-0014-z
dc.relation/*ref*/M. Buitrago-Vásquez; C. P. Ossa-Orozco, “Degradation, water uptake, injectability and mechanical strength of injectable bone substitutes composed of silk fibroin and hydroxyapatite nanorods,” Rev. Fac. Ing., vol. 27, no. 48, pp. 49–60, 2018. https://doi.org/10.19053/01211129.v27.n48.2018.8072
dc.relation/*ref*/J. Ming; B. Zuo, “A novel electrospun silk fibroin/hydroxyapatite hybrid nanofibers,” Mater. Chem. Phys., vol. 137, no. 1, pp. 421–427, Nov. 2012. https://doi.org/10.1016/j.matchemphys.2012.10.001
dc.relation/*ref*/J.-P. Chen; S.-H. Chen; G.-J. Lai, “Preparation and characterization of biomimetic silk fibroin/chitosan composite nanofibers by electrospinning for osteoblasts culture,” Nanoscale Res. Lett., vol. 7, no. 1, p. 170, Dec. 2012. https://doi.org/10.1186/1556-276X-7-170
dc.relation/*ref*/Y. Yang; X. Ding; T. Zou; G. Peng; H. Liu; Y. Fan, “Preparation and characterization of electrospun graphene/silk fibroin conductive fibrous scaffolds,” RSC Adv., vol. 7, no. 13, pp. 7954–7963, 2017. https://doi.org/10.1039/C6RA26807B
dc.relation/*ref*/F. A. Sheikh et al., “A novel approach to fabricate silk nanofibers containing hydroxyapatite nanoparticles using a three-way stopcock connector,” Nanoscale Res. Lett., vol. 8, no. 1, p. 303, Dec. 2013. https://doi.org/10.1186/1556-276X-8-303
dc.relation/*ref*/H. Nalvuran; A. E. Elçin; Y. M. Elçin, “Nanofibrous silk fibroin/reduced graphene oxide scaffolds for tissue engineering and cell culture applications,” Int. J. Biol. Macromol., vol. 114, pp. 77–84, Jul. 2018. https://doi.org/10.1016/j.ijbiomac.2018.03.072
dc.relation/*ref*/N. Panda; A. Bissoyi; K. Pramanik; A. Biswas, “Directing osteogenesis of stem cells with hydroxyapatite precipitated electrospun eri–tasar silk fibroin nanofibrous scaffold,” J. Biomater. Sci. Polym. Ed., vol. 25, no. 13, pp. 1440–1457, Sep. 2014. https://doi.org/10.1080/09205063.2014.943548
dc.relation/*ref*/M. Buitrago Vásquez, “Degradación, absorción, inyectabilidad y resistencia mecánica de sustitutos óseos inyectables compuestos de fibroína y nanobarras de hidroxiapatita,” Rev. Fac. ing. vol. 27, no. 48, pp.49-60 2017. http://dx.doi.org/10.19053/01211129.v27.n48.2018.8072
dc.relation/*ref*/M. Andiappan et al., “Electrospun eri silk fibroin scaffold coated with hydroxyapatite for bone tissue engineering applications,” Prog. Biomater., vol. 2, no. 1, p. 6, 2013. https://doi.org/10.1186/2194-0517-2-6
dc.relation/*ref*/S. Calamak; E. A. Aksoy; N. Ertas; C. Erdogdu; M. Sagıroglu; K. Ulubayram, “Ag/silk fibroin nanofibers: Effect of fibroin morphology on Ag+ release and antibacterial activity,” Eur. Polym. J., vol. 67, pp. 99–112, Jun. 2015. https://doi.org/10.1016/j.eurpolymj.2015.03.068
dc.relation/*ref*/N. N. Panda; A. Biswas; K. Pramanik; S. Jonnalagadda, “Enhanced osteogenic potential of human mesenchymal stem cells on electrospun nanofibrous scaffolds prepared from eri-tasar silk fibroin,” J. Biomed. Mater. Res. Part B Appl. Biomater., vol. 103, no. 5, pp. 971–982, Jul. 2015. https://doi.org/10.1002/jbm.b.33272
dc.relation/*ref*/H. JoonJin; J. Chen; V. Karageorgiou; G. H. Altman; D. L. Kaplan, “Human bone marrow stromal cell responses on electrospun silk fibroin mats,” Biomaterials, vol. 25, no. 6, pp. 1039–1047, Mar. 2004. https://doi.org/10.1016/S0142-9612(03)00609-4
dc.relation/*ref*/H. Kim; L. Che; Y. Ha; W. Ryu, “Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles,” Mater. Sci. Eng. C, vol. 40, pp. 324–335, Jul. 2014. https://doi.org/10.1016/j.msec.2014.04.012
dc.relation/*ref*/M. Kang; P. Chen; H.-J. Jin, “Preparation of multiwalled carbon nanotubes incorporated silk fibroin nanofibers by electrospinning,” Curr. Appl. Phys., vol. 9, no. 1, pp. S95–S97, Jan. 2009. https://doi.org/10.1016/j.cap.2008.08.014
dc.relation/*ref*/V. Karageorgiou; D. Kaplan, “Porosity of 3D biomaterial scaffolds and osteogenesis,” Biomaterials, vol. 26, no. 27, pp. 5474–5491, Sep. 2005. https://doi.org/10.1016/j.biomaterials.2005.02.002
dc.rightsCopyright (c) 2020 TecnoLógicasen-US
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0en-US
dc.sourceTecnoLógicas; Vol. 23 No. 49 (2020); 33-51en-US
dc.sourceTecnoLógicas; Vol. 23 Núm. 49 (2020); 33-51es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectSilk fibroinen-US
dc.subjectelectrospinning characterizationen-US
dc.subjectbone tissue engineeringen-US
dc.subjectFibroína de sedaes-ES
dc.subjectcaracterización de electrospinninges-ES
dc.subjectingeniería de tejidos óseoes-ES
dc.titleCharacterization of Electrospun Silk Fibroin Scaffolds for Bone Tissue Engineering: A Reviewen-US
dc.titleCaracterización de andamios de seda fibroína electrohilados para ingeniería de tejidos óseo: una revisiónes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeReview Articleen-US
dc.typeArtículos de revisiónes-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem