Mostrar el registro sencillo del ítem

Evaluación de tecnologías para la estabilización de suelos viales empleando intemperismo acelerado. Una estrategia de análisis de impactos sobre la biodiversidad

dc.creatorLlano, Eliana
dc.creatorRíos , Diana
dc.creatorRestrepo , Gloria
dc.date2020-09-15
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1624
dc.identifier10.22430/22565337.1624
dc.descriptionRoad infrastructure construction generates direct impacts on biodiversity such as habitat fragmentation; death of animals by run over; deforestation, noise pollution and particulate matter; deterioration and depletion of natural resources due to the exploitation of sources of materials. Chemical stabilization is presented as a technical, economically and environmentally sustainable solution, which consists in the use of chemical additives to improve the engineering properties of the soil. This investigation evaluates different stabilization technologies under conditions of accelerated weathering, to establish its effect on performance and durability of road soils, as well as possible impacts on biodiversity compared to the use of traditional building materials. Seven chemicals were studied that were added on a soil previously characterized and classified. Specimens were compacted with the parameters obtained in the standard proctor and these specimens were subjected to continuous cycles of ultraviolet light (UVA) and condensation in QUV-SPRAY / 240 Accelerated Weathering Chamber at exposure times: 0, 108, 216, 324, 432 and 540 h. For each time, pH, conductivity, unconfined compressive strength and direct shear test were measured. The results obtained showed a good performance of the additive systems by presenting greater mechanical resistance with respect to the natural soil, this effect is especially greater in pozzolanic products. On the other hand, it is observed that when applying these products, the soil retains characteristics of the natural soil, lower emissions of particulate material and lower rates of heat absorption compared to a traditional pavement structure. The evaluation under conditions of accelerated weathering allows to estimate the long-term performance and the useful life of these materials; show advantages from an environmental and biodiversity conservation point of view, by mitigating impacts such as the edge effect by decreasing surface temperature conditions on roads.en-US
dc.descriptionLa construcción de infraestructura vial genera impactos directos sobre la biodiversidad como la fragmentación del hábitat; muerte de animales por atropellamiento; deforestación, contaminación por ruido y material particulado; y deterioro y agotamiento de recursos naturales por la explotación de fuentes de materiales. La estabilización química se presenta como una solución técnica, económica y ambientalmente sostenible, que consiste en el uso de aditivos químicos para mejorar las propiedades ingenieriles del suelo En esta investigación se evalúan distintas tecnologías de estabilización bajo condiciones de intemperismo acelerado, para establecer su efecto en el desempeño y durabilidad de suelos viales, así como posibles impactos sobre la biodiversidad en comparación con el uso de materiales tradicionales de construcción. Se estudiaron siete productos químicos que fueron aditivados sobre un suelo previamente caracterizado y clasificado. Se compactaron probetas teniendo en cuenta los parámetros obtenidos en el proctor estándar y estos especímenes se sometieron a ciclos continuos de luz ultravioleta (UVA) y de condensación en cámara de intemperismo acelerado QUV-SPRAY/240 a tiempos de exposición de 0, 108, 216, 324, 432 y 540 h. Para cada tiempo se midió pH, conductividad y resistencia a la compresión no confinada. Los resultados mostraron un buen desempeño de los sistemas aditivados al presentar mayores resistencias mecánicas respecto al suelo natural, destacándose los productos de naturaleza puzolánica. Por otra parte, se observa que, al aplicar estos productos, el suelo conserva características del suelo natural, menores emisiones de material particulado y menores tasas de absorción de calor respecto a una estructura de pavimento tradicional. La evaluación bajo condiciones de intemperismo acelerado permite estimar el desempeño a largo plazo y la vida útil de estos materiales; así como evidenciar ventajas desde el punto de vista ambiental y de conservación de la biodiversidad, por la mitigación de impactos como el efecto borde al disminuir condiciones de temperatura superficial en las carreteras.es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.formattext/html
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1624/1761
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1624/1774
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1624/1797
dc.relation/*ref*/A. Behnood, “Soil and clay stabilization with calcium-and non-calcium-based additives: A state-of-the-art review of challenges, approaches and techniques,” Transp. Geotech., vol p 17, no. part A, pp. 14–32, Dec. 2018. https://doi.org/10.1016/j.trgeo.2018.08.002
dc.relation/*ref*/P. G. Nicholson, “Chapter 13 - Thermal Treatments,” en Soil Improvement and Ground Modification Methods, P. G. Nicholson, Ed. Estados Unidos: Elsevier, 2015, pp. 319–339. https://doi.org/10.1016/B978-0-12-408076-8.00013-3
dc.relation/*ref*/T. M. Petry; D. N. Little, “Review of Stabilization of Clays and Expansive Soils in Pavements and Lightly Loaded Structures—History, Practice, and Future,” J. Mater. Civ. Eng., vol. 14, no. 6, pp. 447–460, Dec. 2002. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:6(447)
dc.relation/*ref*/A. Al-Khanbashi; M. El-Gamal, “Modification of sandy soil using water-borne polymer,” J. Appl. Polym. Sci., vol. 88, no. 10, pp. 2484–2491, Jun. 2003. https://doi.org/10.1002/app.12066
dc.relation/*ref*/C. Zhou; S. Zhao; W. Huang; D. Li; Z. Liu, “Study on the Stabilization Mechanisms of Clayey Slope Surfaces Treated by Spraying with a New Soil Additive,” Appl. Sci., vol. 9, no. 6, p. 1245, Mar. 2019. https://doi.org/10.3390/app9061245
dc.relation/*ref*/S. Rezaeimalek; J. Huang; S. Bin-Shafique, “Evaluation of curing method and mix design of a moisture activated polymer for sand stabilization,” Constr. Build. Mater., vol. 146, pp. 210–220, Aug. 2017. https://doi.org/10.1016/j.conbuildmat.2017.04.093
dc.relation/*ref*/I. G. Panova; D. D. Khaydapova; L. O. Ilyasov; A. B. Umarova; A. A. Yaroslavov, “Polyelectrolyte complexes based on natural macromolecules for chemical sand/soil stabilization,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 590, Apr. 2020. https://doi.org/10.1016/j.colsurfa.2020.124504
dc.relation/*ref*/B. K. Cuipal Chávez, “Estabilización de la subrasante de suelo arcilloso con uso de polímero sintético en la carretera Chachapoyas – Huancas, Amazonas,” (Trabajo de grado), Universidad César Vallejo, Lima, Perú, 2018. https://alicia.concytec.gob.pe/vufind/Record/UCVV_810c6f937edaeeef7b58c859ab78fdd1/Details
dc.relation/*ref*/T. A. Khan; M. R. Taha, “Effect of Three Bioenzymes on Compaction, Consistency Limits, and Strength Characteristics of a Sedimentary Residual Soil,” Adv. Mater. Sci. Eng., vol. 2015, pp. 1–9, Jun. 2015. https://doi.org/10.1155/2015/798965
dc.relation/*ref*/A. AbouKhadra; A. F. Zidan; Y. Gaber, “Experimental evaluation of strength characteristics of different Egyptian soils using enzymatic stabilizers,” Cogent Eng., vol. 5, no. 1, pp. 1–11, Sep. 2018. https://doi.org/10.1080/23311916.2018.1517577
dc.relation/*ref*/S. S. Kushwaha; D. Kishan; M. S. Chauhan; S. Khetawath, “Stabilization of Red mud using eko soil enzyme for highway embankment,” Mater. Today Proc., vol. 5, no. 9, part. 3, pp. 20500–20512, 2018. https://doi.org/10.1016/j.matpr.2018.06.427
dc.relation/*ref*/J. Pooni; F. Giustozzi; D. Robert; S. Setunge; B. O’donnell, “Durability of enzyme stabilized expansive soil in road pavements subjected to moisture degradation,” Transp. Geotech., vol. 21, Dec. 2019. https://doi.org/10.1016/j.trgeo.2019.100255
dc.relation/*ref*/J. Camacho Tauta; Ó. J. Reyes Ortiz; C. Mayorga Antolínez, “Curado natural y acelerado de una arcilla estabilizada con aceite sulfonado,” Ing. y Desarro., no. 24, pp. 48–62, Jul. 2008. http://www.scielo.org.co/pdf/inde/n22/n24a05.pdf
dc.relation/*ref*/A. Soltani; A. Deng; A. Taheri; M. Mirzababaei, “A sulphonated oil for stabilisation of expansive soils,” Int. J. Pavement Eng., vol. 20, no. 11, pp. 1285–1298, Dec. 2017. https://doi.org/10.1080/10298436.2017.1408270
dc.relation/*ref*/G. J. Colmenares Roldán, “Desarrollo de estabilizantes de suelos para la construcción de infraestructura vial a partir de subproductos de la explotación minera,” (Tesis de Maestría), Facultad de Ingeniería, Universidad de Antioquia, Medellín, 2015. http://opac.udea.edu.co/cgi-olib/?infile=details.glu&loid=1415194&rs=13226129&hitno=3
dc.relation/*ref*/L. D. Jerez; O. E. Gómez; C. A. Murillo, “Stabilization of Colombian lateritic soil with a hydrophobic compound (organosilane),” Int. J. Pavement Res. Technol., vol. 11, no. 6, pp. 639–646, Nov. 2018. https://doi.org/10.1016/j.ijprt.2018.06.001
dc.relation/*ref*/C. C. Corzo Dardón, “Evaluación de las reacciones de hidratación y puzolánica del cemento portland con incorporación de puzolana natural y cal mediante termogravimetría y microscopía electrónica de barrido,” 2013. http://biblioteca.usac.edu.gt/tesis/08/08_1329_Q.pdf
dc.relation/*ref*/O. J. Reyes Ortiz; J. F. Camacho Tauta, “Effect of ultraviolet radiation on an asphalt mixture’s mechanical and dynamic properties,” Ing. e Investig., vol. 28, no. 3, pp. 22–27, Sep. 2008. https://revistas.unal.edu.co/index.php/ingeinv/article/view/15116
dc.relation/*ref*/R. Paolini et al., “Effects of soiling and weathering on the albedo of building envelope materials: Lessons learned from natural exposure in two European cities and tuning of a laboratory simulation practice,” Sol. Energy Mater. Sol. Cells, vol. 205, Feb. 2020. https://doi.org/10.1016/j.solmat.2019.110264
dc.relation/*ref*/S. G. Croll, “Reciprocity in weathering exposure and the kinetics of property degradation,” Prog. Org. Coatings, vol. 127, pp. 140–150, Feb. 2019. https://doi.org/10.1016/j.porgcoat.2018.10.003
dc.relation/*ref*/J. Andrade; V. Fernández-González; P. López-Mahía; S. Muniategui, “A low-cost system to simulate environmental microplastic weathering,” Marine Pollution Bulletin, vol. 149, Dec. 2019. https://doi.org/10.1016/j.marpolbul.2019.110663
dc.relation/*ref*/P. Jayanthi; D. N. Singh, “Utilization of Sustainable Materials for Soil Stabilization: State-of-the-Art,” Advances in Civil Engineering Materials., vol. 5, no. 1, Feb. 2016. https://doi.org/10.1520/ACEM20150013
dc.relation/*ref*/M. Al-Mukhtar; A. Lasledj; J.-F. Alcover, “Behaviour and mineralogy changes in lime-treated expansive soil at 20°C,” Appl. Clay Sci., vol. 50, no. 2, pp. 191–198, Oct. 2010. https://doi.org/10.1016/j.clay.2010.07.023
dc.relation/*ref*/O. Amini; M. Ghasemi, “Laboratory study of the effects of using magnesium slag on the geotechnical properties of cement stabilized soil,” Constr. Build. Mater., vol. 223, pp. 409–420, Oct. 2019. https://doi.org/10.1016/j.conbuildmat.2019.07.011
dc.relation/*ref*/M. Taslimi Paein Afrakoti; A. Janalizadeh Choobbasti; M. Ghadakpour; S. Soleimani Kutanaei, “Investigation of the effect of the coal wastes on the mechanical properties of the cement-treated sandy soil,” Constr. Build. Mater., vol. 239, Apr. 2020. https://doi.org/10.1016/j.conbuildmat.2019.117848
dc.relation/*ref*/M. Salimi; A. Ghorbani, “Mechanical and compressibility characteristics of a soft clay stabilized by slag-based mixtures and geopolymers,” Appl. Clay Sci., vol. 184, Jan. 2020. https://doi.org/10.1016/j.clay.2019.105390
dc.relation/*ref*/H. Zhao; L. Ge; T. M. Petry; Y. Z. Sun, “Effects of chemical stabilizers on an expansive clay,” KSCE J. Civ. Eng., vol. 18, pp. 109–1017, Sep. 2013. https://doi.org/10.1007/s12205-013-1014-5
dc.rightsCopyright (c) 2020 TecnoLógicasen-US
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0en-US
dc.sourceTecnoLógicas; Vol. 23 No. 49 (2020); 185-199en-US
dc.sourceTecnoLógicas; Vol. 23 Núm. 49 (2020); 185-199es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectChemical stabilization materialsen-US
dc.subjectclay soilsen-US
dc.subjectweathering on road soilsen-US
dc.subjectsustainable road infrastructureen-US
dc.subjectphysicochemical and mechanical characterizationen-US
dc.subjectMateriales para estabilización químicaes-ES
dc.subjectsuelos arcillososes-ES
dc.subjectintemperismo sobre suelos vialeses-ES
dc.subjectinfraestructura vial sosteniblees-ES
dc.subjectcaracterización fisicoquímica y mecánicaes-ES
dc.titleEvaluation of Technologies for Stabilization of Road Soils Using Accelerated Weathering. A Strategy for Analysis of Impacts on Biodiversityen-US
dc.titleEvaluación de tecnologías para la estabilización de suelos viales empleando intemperismo acelerado. Una estrategia de análisis de impactos sobre la biodiversidades-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem