Mostrar el registro sencillo del ítem

Redes neuronales convolucionales para la clasificación de componentes independientes de rs-fMRI

dc.creatorMera-Jiménez, Leonel
dc.creatorOchoa-Gómez, John F.
dc.date2021-01-30
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1626
dc.identifier10.22430/22565337.1626
dc.descriptionResting state functional magnetic resonance imaging (rs-fMRI) is one of the most relevant techniques in brain exploration. However, it is susceptible to many external factors that can occlude the signal of interest. In this order of ideas, rs-fMRI images have been studied adopting different approaches, with a particular interest in artifact removal techniques through Independent Component Analysis (ICA). Such an approach is a powerful tool for blind source separation, where elements associated with noise can be eliminated. Nevertheless, such removal is subject to the identification or classification of the components provided by the ICA. In that sense, this study focuses on finding an alternative strategy to classify the independent components. The problem was addressed in two stages. In the first one, the components (3D volumes) were reduced to images by Principal Component Analysis (PCA) and by obtaining the median planes. The methods achieved a reduction of up to two orders of magnitude in the weight of the data size, and they were shown to preserve the spatial characteristics of the independent components. In the second stage, the reductions were used to train six models of convolutional neural networks. The networks analyzed in this study reached accuracies around 98 % in classification, one of them even up to 98.82 %, which reflects the high discrimination capacity of convolutional neural networks.en-US
dc.descriptionLa resonancia magnética funcional en estado de reposo (rs-fMRI) es una de las técnicas más relevantes en exploración cerebral. No obstante, la misma es susceptible a muchos factores externos que pueden ocluir la señal de interés. En este orden de ideas, las imágenes rs-fMRI han sido estudiadas desde diferentes enfoques, existiendo un especial interés en las técnicas de eliminación de artefactos a través del Análisis de Componentes Independientes (ICA por sus siglas en inglés). El enfoque es una herramienta poderosa para la separación ciega de fuentes donde es posible eliminar los elementos asociados a ruido. Sin embargo, dicha eliminación está sujeta a la identificación o clasificación de las componentes entregadas por ICA. En ese sentido, esta investigación se centró en encontrar una estrategia alternativa para la clasificación de las componentes independientes. El problema se abordó en dos etapas. En la primera de ellas, se redujeron las componentes (volúmenes 3D) a imágenes mediante el Análisis de Componentes Principales (PCA por sus siglas en inglés) y con la obtención de los planos medios. Los métodos lograron una reducción de hasta dos órdenes de magnitud en peso de los datos y, además, demostraron conservar las características espaciales de las componentes independientes. En la segunda etapa, se usaron las reducciones para entrenar seis modelos de redes neuronales convolucionales. Las redes analizadas alcanzaron precisiones alrededor de 98 % en la clasificación e incluso se encontró una red con una precisión del 98.82 %, lo cual refleja la alta capacidad de discriminación de las redes neuronales convolucionales.es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.formattext/html
dc.formatapplication/zip
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1626/1813
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1626/1819
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1626/1827
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1626/1926
dc.relation/*ref*/G. A. Ascoli; M. Halavi, “Neuroinformatics,” Encyclopedia of Neuroscience. pp. 477–484, 2009. https://doi.org/10.1016/B978-008045046-9.00872-X
dc.relation/*ref*/P. M. Rossini et al., “Methods for analysis of brain connectivity: An IFCN-sponsored review,” Clinical Neurophysiology, vol. 130, no. 10, pp. 1833–1858, Oct. 2019. https://doi.org/10.1016/j.clinph.2019.06.006
dc.relation/*ref*/L. A. Muñoz-Bedoya; L. E. Mendoza; J. Velandia-Villamizar, “Segmentation of Magnetic Resonance Imaging MRI using LS-SVM and Wavelet Multiresolution Analysis,” TecnoLógicas, edición especial, pp. 681-693, Oct. 2013. https://doi.org/10.22430/22565337.381
dc.relation/*ref*/C. Guarnizo-Lemus, “Análisis de reducción de ruido en señales EEG orientado al reconocimiento de patrones,” TecnoLógicas, no. 21, pp. 67-80, Dec. 2008. https://doi.org/10.22430/22565337.248
dc.relation/*ref*/J. L. Armony; D. Trejo Martínez; D. Hernández, “Resonancia Magnética Funcional (RMf): principios y aplicaciones en Neuropsicología y Neurociencias Cognitivas,” Rev. Neuropsicol. Latinoam., vol. 4, no. 2, pp. 36–50, Apr. 2012. https://www.neuropsicolatina.org/index.php/Neuropsicologia_Latinoamericana/article/view/103
dc.relation/*ref*/M. E. Raichle, “The Brain’s Default Mode Network,” Annu. Rev. Neurosci., vol. 38, pp. 433–447, May. 2015. https://doi.org/10.1146/annurev-neuro-071013-014030
dc.relation/*ref*/W. Qian et al., “Delusions in Alzheimer Disease are Associated with Decreased Default Mode Network Functional Connectivity,” Am. J. Geriatr. Psychiatry, vol. 27, no. 10, pp. 1060–1068, Oct. 2019. https://doi.org/10.1016/j.jagp.2019.03.020
dc.relation/*ref*/R. Franciotti et al., “Somatic symptoms disorders in Parkinson’s disease are related to default mode and salience network dysfunction,” NeuroImage Clin., vol. 23, Apr. 2019. https://doi.org/10.1016/j.nicl.2019.101932
dc.relation/*ref*/S. Lang; N. Duncan; G. Northoff, “Resting-state functional magnetic resonance imaging: Review of neurosurgical applications,” Neurosurgery, vol. 74, no. 5. pp. 453–464, Jan. 2014. https://doi.org/10.1227/NEU.0000000000000307
dc.relation/*ref*/G. D. Pearlson, “Applications of Resting State Functional MR Imaging to Neuropsychiatric Diseases,” Neuroimaging Clin N. Am., vol. 27, no. 4, pp. 709–723, Nov. 2017. https://doi.org/10.1016/j.nic.2017.06.005
dc.relation/*ref*/J. D. Kropotov, “Functional Magnetic Resonance Imaging,” in Functional Neuromarkers for Psychiatry applications for diagnosis and treatment, Elsevier inc., 2016, pp. 17–25. https://doi.org/10.1016/B978-0-12-410513-3.00003-6
dc.relation/*ref*/J. Mohan; V. Krishnaveni; Y. Guo, “A survey on the magnetic resonance image denoising methods,” Biomed. Signal Process, vol. 9, no. 1, pp. 56–69, Jan. 2014. https://doi.org/10.1016/j.bspc.2013.10.007
dc.relation/*ref*/L. L. Wald, “Ultimate MRI,” J. Magn. Reson., vol. 306, pp. 139–144, Sep. 2019. https://doi.org/10.1016/j.jmr.2019.07.016
dc.relation/*ref*/D. S. Margulies et al., “Resting developments: A review of fMRI post-processing methodologies for spontaneous brain activity,” Magn. Reson. Mater. Physics, Biol. Med., vol. 23, no. 5–6, pp. 289–307, Oct. 2010. https://doi.org/10.1007/s10334-010-0228-5
dc.relation/*ref*/M. A. Lindquist, “The Statistical Analysis of fMRI Data,” Statistical Science., vol. 23, no. 4, pp. 439–464, 2008. http://dx.doi.org/10.1214/09-STS282
dc.relation/*ref*/K. Chen; A. Azeez; D. Y. Chen; B. B. Biswal, “Resting-state Functional Connectivity: Signal Origins and Analytic Methos,” Neuroimag Clin N. Am, vol. 30, no. 1, pp. 15–23, Feb. 2020. https://doi.org/10.1016/j.nic.2019.09.012
dc.relation/*ref*/F. Gregory Ashby, Statistical Analysis of fMRI Data, Second. MIT press. 2019. https://doi.org/10.7551/mitpress/11557.001.0001
dc.relation/*ref*/M. M. Monti, “Statistical analysis of fMRI time-series: a critical review of the GLM approach,” in Front. Hum. Neurosci, vol. 5, no. 28, pp. 147–154. Mar. 2011. https://doi.org/10.3389/fnhum.2011.00028
dc.relation/*ref*/M. Khosla; K. Jamison; G. H. Ngo; A. Kuceyeski; M. R. Sabuncu, “Machine learning in resting-state fMRI analysis,” Magnetic Resonance Imaging, vol. 64, pp. 101–121, Dec. 2019. https://doi.org/10.1016/j.mri.2019.05.031
dc.relation/*ref*/C. F. Beckmann, M. DeLuca, J. T. Devlin; S. M. Smith, “Investigations into resting-state connectivity using independent component analysis,” Philos. Trans. R. Soc. B Biol. Sci., vol. 360, no. 1457, pp. 1001–1013, May. 2005. https://doi.org/10.1098/rstb.2005.1634
dc.relation/*ref*/R. H. R. Pruim; M. Mennes; D. Van Rooij; A. Llera; J. K. Buitelaar; C. F. Beckmann, “ICA-AROMA : A robust ICA-based strategy for removing motion artifacts from fMRI data,” Neuroimage, vol. 112, pp. 267–277, May. 2015. https://doi.org/10.1016/j.neuroimage.2015.02.064
dc.relation/*ref*/L. Griffanti et al., “Hand classification of fMRI ICA noise components,” Neuroimage, vol. 154, pp. 188–205, Jul. 2017. https://doi.org/10.1016/j.neuroimage.2016.12.036
dc.relation/*ref*/L. Griffanti et al., “ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging,” Neuroimage, vol. 95, pp. 232–247, Jul. 2014. https://doi.org/10.1016/j.neuroimage.2014.03.034
dc.relation/*ref*/G. Salimi-Khorshidi; G. Douaud; C. F. Beckmann; M. F. Glasser; L. Griffanti; S. M. Smith, “Automatic denoising of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers,” Neuroimage, vol. 90, pp. 449–468, Apr. 2014, https://doi.org/10.1016/j.neuroimage.2013.11.046
dc.relation/*ref*/D. Ravi et al., “Deep Learning for Health Informatics,” IEEE J. Biomed. Heal. Informatics, vol. 21, no. 1, pp. 4–21, Jan. 2017. https://doi.org/10.1109/JBHI.2016.2636665
dc.relation/*ref*/J. A. Peña-Torres; R. E. Gutiérrez; V. A. Bucheli; F. A. González, “Cómo adaptar un modelo de aprendizaje profundo a un nuevo dominio: el caso de la extracción de relaciones biomédicas,” TecnoLógicas, vol. 22, Edición especial, pp. 49–62, Dic. 2019. http://dx.doi.org/10.22430/22565337.1483
dc.relation/*ref*/W. Liu; Z. Wang; X. Liu; N. Zeng; Y. Liu; F. E. Alsaadi, “A survey of deep neural network architectures and their applications,” Neurocomputing, vol. 234, no. 19, pp. 11–26, Apr. 2017. https://doi.org/10.1016/j.neucom.2016.12.038
dc.relation/*ref*/K. He; X. Zhang; S. Ren; J. Sun, “Delving deep into rectifiers: Surpassing human-level performance on imagenet classification,” in Proceedings of the IEEE International Conference on Computer Vision, 2015, Santiago de chile, 2015. pp. 1026–1034. https://doi.org/10.1109/ICCV.2015.123
dc.relation/*ref*/Z. Mao et al., “Spatio-temporal deep learning method for ADHD fMRI classification,” Inf. Sci., vol. 499, pp. 1–11, Oct. 2019. https://doi.org/10.1016/j.ins.2019.05.043
dc.relation/*ref*/A. Riaz; M. Asad; E. Alonso; G. Slabaugh, “DeepFMRI: End-to-end deep learning for functional connectivity and classification of ADHD using fMRI,” J. Neurosci. Methods, vol. 335, p. 108506, Apr. 2020. https://doi.org/10.1016/j.jneumeth.2019.108506
dc.relation/*ref*/M. P. Hosseini; T. X. Tran; D. Pompili; K. Elisevich; H. Soltanian-Zadeh, “Multimodal data analysis of epileptic EEG and rs-fMRI via deep learning and edge computing,” Artif. Intell. Med., vol. 104, Apr. 2020. https://doi.org/10.1016/j.artmed.2020.101813
dc.relation/*ref*/A. S. Lundervold; A. Lundervold, “An overview of deep learning in medical imaging focusing on MRI,” Zeitschrift fßr Medizinische Phys., vol. 29, no. 2, pp. 102–127, May. 2019. https://doi.org/10.1016/j.zemedi.2018.11.002
dc.relation/*ref*/M. Mostapha; M. Styner, “Role of deep learning in infant brain MRI analysis,” Magnetic Resonance Imaging, vol. 64, pp. 171–189, Dec. 2019. https://doi.org/10.1016/j.mri.2019.06.009
dc.relation/*ref*/Y. Guo; Y. Liu, A. Oerlemans; S. Lao; S. Wu; M. S. Lew, “Deep learning for visual understanding: A review,” Neurocomputing, vol. 187, pp. 27–48, Apr. 2016. https://doi.org/10.1016/j.neucom.2015.09.116
dc.relation/*ref*/W. Hernandez; A. Mendez, “Application of Principal Component Analysis to Image Compression,” in Statistics - Growing Data Sets and Growing Demand for Statistics, Türkmen Gö., 2018. http://dx.doi.org/10.5772/intechopen.75007
dc.relation/*ref*/J. Teuwen; N. Moriakova, “Convolutional neural networks,” in Handbook of Medical Image Computing and Computer Assisted Intervention, Academic P., Ed. 2020, pp. 481–501. https://doi.org/10.1016/B978-0-12-816176-0.00025-9
dc.relation/*ref*/M. F. Glasser et al., “The minimal preprocessing pipelines for the Human Connectome Project,” Neuroimage, vol. 80, pp. 105–124, Oct. 2013. https://doi.org/10.1016/j.neuroimage.2013.04.127
dc.relation/*ref*/T. H. C. Projet, “HCP Young Adult - Connectome – Publications an overview,” 2009. https://www.humanconnectome.org/study/hcp-young-adult
dc.relation/*ref*/Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX “Whitehall Imaging Oxford”. https://www.psych.ox.ac.uk/research/neurobiology-of-ageing/research-projects-1/whitehall-oxford
dc.relation/*ref*/“FMRIB Software Library v6.0,” Created by the Analysis Group, FMRIB, Oxford, UK. 2020. https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
dc.relation/*ref*/M. Jekinson; C. F. Beckmann; T. E. J. Behrens; M. W. Woolrich; S. M. Smith, “FSL,” Neuroimage, vol. 62, no. 2, pp. 782–790, Aug. 2012. https://doi.org/10.1016/j.neuroimage.2011.09.015
dc.relation/*ref*/The Analysis Group FMRIB, “MELODIC.”, version 3.04, 2019. https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC
dc.relation/*ref*/G. Salimi-khorshidi et al., “Fix Hand-Training Datasets.” https://www.fmrib.ox.ac.uk/datasets/FIX-training
dc.relation/*ref*/S. M. Anwar; M. Majid; A. Qayyum; M. Awais; M. Alnowami; M. K. Khan, “Medical Image Analysis using Convolutional Neural Networks: A Review,” Journal of Medical Systems, vol. 42, no. 11, pp. 1–13, 2018. https://doi.org/10.1007/s10916-018-1088-1
dc.relation/*ref*/Y. LeCun; L. Bottou; Y. Bengio; P. Haffner, “Gradient-based learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2323, Nov. 1998. https://doi.org/10.1109/5.726791
dc.relation/*ref*/N. J. Tustison; B. B. Avants; J. C. Gee, “Learning image-based spatial transformations via convolutional neural networks: A review,” Magn. Reson. Imaging, vol. 64, pp. 142–153, Dec. 2019. https://doi.org/10.1016/j.mri.2019.05.037
dc.relation/*ref*/S. Vieira; W. H. Lopez Pinaya; A. Mechelli, Main concepts in machine learning.en Machine Learnin. Methods and Applications to Brain Disorders. Elsevier Inc., 2020. https://doi.org/10.1016/B978-0-12-815739-8.00002-X
dc.relation/*ref*/Y. Lecun; Y. Bengio; G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–444, May 2015. https://doi.org/10.1038/nature14539
dc.rightsCopyright (c) 2020 TecnoLógicasen-US
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0en-US
dc.sourceTecnoLógicas; Vol. 24 No. 50 (2021); e1626en-US
dc.sourceTecnoLógicas; Vol. 24 Núm. 50 (2021); e1626es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectIndependent Component Analysisen-US
dc.subjectPrincipal Component Analysisen-US
dc.subjectConvolutional Neural Networken-US
dc.subjectdenoising in fMRIen-US
dc.subjectresting-stateen-US
dc.subjectAnálisis de Componentes Independienteses-ES
dc.subjectAnálisis de Componentes Principaleses-ES
dc.subjectRedes Neuronales Convolucionaleses-ES
dc.subjectreducción de ruido en fMRIes-ES
dc.subjectestado de reposoes-ES
dc.titleConvolutional Neural Network for the Classification of Independent Components of rs-fMRIen-US
dc.titleRedes neuronales convolucionales para la clasificación de componentes independientes de rs-fMRIes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem