Mostrar el registro sencillo del ítem

Herramienta basada en agentes para la valoración del impacto de intervenciones no farmacéuticas contra la COVID-19

dc.creatorÁlvarez Pomar , Lindsay
dc.creatorRojas-Galeano, Sergio
dc.date2020-09-15
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1685
dc.identifier10.22430/22565337.1685
dc.descriptionNon-Pharmaceutical Interventions (NPI) are currently the only mechanism governments can use to mitigate the impact of the COVID-19 epidemic. Similarly, to the actual spread of the disease, the dynamics of the contention patterns emerging from the application of NPIs are complex and depend on interactions between people within a specific region as well as other stochastic factors associated to demographic, geographic, political and economical conditions. Agent-based models simulate microscopic rules of simultaneous interactions of multiple agents within a population in an attempt to reproduce the complex dynamics of the effect of the contention measures. In this way it is possible to design individual behaviors along with NPI scenarios, measuring how the simulation dynamics is affected and therefore, yielding rapid insights to perform a broad assessment of the potential of composite interventions at different stages of the epidemic. In this paper we describe a model and a tool to experiment with this kind of analysis, considering a number of widely-applied NPIs such as social distancing, case isolation, home quarantine, total lockdown, sentinel testing, mask wearing and a novel “zonal” enforcement requiring these interventions to be applied gradually to separated districts (zones). The choice of the most adequate interventions, or mixture of interventions, ultimately will depend on the socio-economic and health conditions of a particular territory and on further large-scale simulation and feasibility estimation of those scenarios yielding a potential mitigation impact, using the insights discovered with the simulation tool.  en-US
dc.descriptionLas intervenciones no farmacéuticas (NPI) son actualmente el único mecanismo que los gobiernos pueden usar para mitigar el impacto de la epidemia de COVID-19. De manera similar a la propagación real de la enfermedad, la dinámica de los patrones de contención que surgen de la aplicación de los NPI es compleja y depende de las interacciones entre las personas dentro de una región específica, así como de otros factores estocásticos asociados a condiciones demográficas, geográficas, políticas y económicas. Los modelos basados en agentes simulan reglas microscópicas de interacciones simultáneas de múltiples individuos dentro de una población en un intento de reproducir la dinámica compleja del efecto de las medidas de contención. De esta manera, es posible diseñar comportamientos individuales junto con escenarios de NPI, midiendo cómo se ve afectada la dinámica de la simulación y, por lo tanto, brindando información útil para realizar una evaluación rápida del potencial de las intervenciones combinadas, en las diferentes etapas de la epidemia. En este artículo describimos un modelo y una herramienta para experimentar con este tipo de análisis, considerando una serie de NPI ampliamente utilizadas, tales como distanciamiento físico, aislamiento de casos, cuarentena domiciliaria, encierro total, pruebas centinela, uso de tapabocas y una novedosa aplicación “zonal”, que permite aplicar estas intervenciones gradualmente a localidades o zonas separadas. La elección de las intervenciones o combinaciones más adecuadas para un territorio particular, dependerá en última instancia de las condiciones socioeconómicas y de salubridad, así como de una validación a gran escala de la viabilidad de los escenarios identificados preliminarmente mediante la herramienta.  es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.formattext/html
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1685/1767
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1685/1775
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1685/1795
dc.relation/*ref*/S. Lai et al., “Effect of non-pharmaceutical interventions to contain COVID-19 in China,” nature, May. 2020. https://doi.org/10.1038/s41586-020-2293-x
dc.relation/*ref*/N. M. Ferguson et al., “Report 9: impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand,” Imp. Coll. UK. Pp. 1-20, Mar. 2020. https://doi.org/10.25561/77482
dc.relation/*ref*/N. M. Ferguson; D. A. T. Cummings; C. Fraser; J. C. Cajka; P. C. Cooley; D. S. Burke, “Strategies for mitigating an influenza pandemic,” Nature, vol. 442, no. 7101, pp. 448–452, Apr. 2006. https://doi.org/10.1038/nature04795
dc.relation/*ref*/D. Fanelli; F. Piazza, “Analysis and forecast of COVID-19 spreading in China, Italy and France,” Chaos, Solitons & Fractals, vol. 134, pp. 109761, May. 2020. https://doi.org/10.1016/j.chaos.2020.109761
dc.relation/*ref*/N. Wilson; L. T. Barnard; A. Kvalsig; A. Verrall; M. G. Baker; M. Schwehm, “Modelling the potential health impact of the covid-19 pandemic on a hypothetical european country,” medRxiv, Mar. 2020. https://doi.org/10.1101/2020.03.20.20039776
dc.relation/*ref*/M. Kantner; T. Koprucki, “Beyond just" flattening the curve": Optimal control of epidemics with purely non-pharmaceutical interventions,” arXiv Prepr. arXiv2004.09471, Jul. 2020. https://arxiv.org/abs/2004.09471
dc.relation/*ref*/G. Giordano et al., “Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy,” Nat. Med., vol. 26, pp. 855-860 Apr. 2020. https://doi.org/10.1038/s41591-020-0883-7
dc.relation/*ref*/S. Ansumali; M. K. Prakash, “A Very Flat Peak: Why Standard SEIR Models Miss the Plateau of COVID-19 Infections and How it can be Corrected,” medRxiv, May. 2020. https://doi.org/10.1101/2020.04.07.20055772
dc.relation/*ref*/W. Bock et al., “Mitigation and herd immunity strategy for COVID-19 is likely to fail,” medRxiv, May. 2020. https://doi.org/10.1101/2020.03.25.20043109
dc.relation/*ref*/J. T. Tuomisto; J. Yrjölä; M. Kolehmainen; J. Bonsdorff; J. Pekkanen; T. Tikkanen, “An agent-based epidemic model REINA for COVID-19 to identify destructive policies,” medRxiv, pp. 1- 29, Apr. 2020. https://doi.org/10.1101/2020.04.09.20047498
dc.relation/*ref*/J. Gomez; J. Prieto; E. Leon; A. Rodriguez, “INFEKTA: A General Agent-based Model for Transmission of Infectious Diseases: Studying the COVID-19 Propagation in Bogotá-Colombia,” medRxiv, pp. 1- 15, Apr. 2020. https://doi.org/10.1101/2020.04.06.20056119
dc.relation/*ref*/S. F. Railsback; V. Grimm, Agent-based and individual-based modeling: a practical introduction. Princeton university press, 2011. https://www.jstor.org/stable/j.ctt7sns7
dc.relation/*ref*/A. Ahmed; J. Greensmith; U. Aickelin, “Variance in system dynamics and agent-based modelling using the SIR model of infectious disease,” Proceedings of the 26th European Conference on Modelling and Simulation (ECMS), Koblenz, Germany, Oct. 2012, pp 9-15. https://arxiv.org/abs/1307.2001
dc.relation/*ref*/K. Lano; D. Clark, “Direct Semantics of Extended State Machines.,” J. Object Technol., vol. 6, no. 9, pp. 35–51, 2007. https://doi.org/10.5381/jot.2007.6.9.a2
dc.relation/*ref*/M. Granada-Echeverri; A. Molina-Cabrera; P. Granada-Echeverri, “Spatio-temporal Projection of Covid-19 in Pereira,” TecnoLógicas., vol. 23, no. 49, Sept. 2020. https://doi.org/10.22430/22565337.1655
dc.relation/*ref*/T. Obadia; R. Haneef; P.-Y. Boëlle, “The R0 package: a toolbox to estimate reproduction numbers for epidemic outbreaks,” BMC Med. Inform. Decis. Mak., vol. 12, no. 1, pp. 147, Dec. 2012. https://doi.org/10.1186/1472-6947-12-147
dc.relation/*ref*/K. Dietz, “The estimation of the basic reproduction number for infectious diseases,” Stat. Methods Med. Res., vol. 2, no. 1, pp. 23–41, Mar. 1993. https://doi.org/10.1177/096228029300200103
dc.relation/*ref*/R. Breban; R. Vardavas; S. Blower, “Theory versus data: how to calculate R0?,” PLoS One, vol. 2, no. 3, Mar. 2007. https://doi.org/10.1371/journal.pone.0000282
dc.relation/*ref*/S. T. Bakir, “Compound Interest Doubling Time Rule: Extensions and Examples from Antiquities,” Commun. Math. Financ., vol. 5, no. 2, pp. 1- 11, Sep. 2016. http://www.scienpress.com/Upload/CMF/Vol%205_2_1.pdf
dc.relation/*ref*/U. Wilensky; W. Rand, An introduction to agent-based modeling: modeling natural, social, and engineered complex systems with NetLogo. Mit Press, 2015. http://www.jstor.org/stable/j.ctt17kk851
dc.relation/*ref*/R. Verity et al., “Estimates of the severity of coronavirus disease 2019: a model-based analysis,” Lancet Infect. Dis., vol. 20, no. 6, pp. 669- 677, Jun. 2020. https://doi.org/10.1016/S1473-3099(20)30243-7
dc.rightsCopyright (c) 2020 TecnoLógicasen-US
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0en-US
dc.sourceTecnoLógicas; Vol. 23 No. 49 (2020); 201-221en-US
dc.sourceTecnoLógicas; Vol. 23 Núm. 49 (2020); 201-221es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectCOVID-19 epidemic contentionen-US
dc.subjectNon-Pharmaceutical Interventions assessmenten-US
dc.subjectAgent-based simulation and toolsen-US
dc.subjectContención de la epidemia COVID-19es-ES
dc.subjectevaluación de intervenciones no farmacéuticases-ES
dc.subjectsimulación y herramientas orientadas a agenteses-ES
dc.titleAn agent-based tool for impact assessment of non-pharmaceutical interventions against COVID-19en-US
dc.titleHerramienta basada en agentes para la valoración del impacto de intervenciones no farmacéuticas contra la COVID-19es-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem