Mostrar el registro sencillo del ítem

Evaluación de daños en pavimento flexible usando fotogrametría terrestre y redes neuronales

dc.creatorTello-Cifuentes, Lizette
dc.creatorAguirre-Sánchez, Marcela
dc.creatorDíaz-Paz, Jean P.
dc.creatorHernández, Francisco
dc.date2021-01-30
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1686
dc.identifier10.22430/22565337.1686
dc.descriptionIn Colombia, road deterioration is assessed by means of road inventories and visual inspections. For this assessment, the Instituto Nacional de Vías (Colombia's National Road Institute) (abbreviated INVIAS in Spanish) uses the Vision Inspection de Zones et Itinéraires Á Risque (VIZIR) and Pavement Index Condition (PCI) methods. These two methods serve to determine the severity of damages in flexible and rigid pavements. However, they can be tedious and subjective and require an experienced evaluator, hence the need to develop new methods for road condition assessment. In this paper, we present a methodology to evaluate flexible pavement deterioration using terrestrial photogrammetry techniques and neural networks. The proposed methodology consists of six stages: (i) image capture, (ii) image preprocessing, (iii) segmentation via edge detection techniques, (iv) characteristic extraction, (v) classification using neural networks, and (vi) assessment of deteriorated areas. It is verified using real images of three different pavement distresses: longitudinal cracking, crocodile cracking, and pothole. As classifier, we use a multilayer neural network with a (12 12 3) configuration and trained using the Levenberg–Marquardt algorithm for backpropagation. The results show a classifier’s accuracy of 96 %, a sensitivity of 93.33 %, and a Cohen's Kappa coefficient of 93.67 %. Thus, our proposed methodology could pave the way for the development of an automated system to assess road deterioration, which may, in turn, reduce time and costs when designing road infrastructure maintenance plans.en-US
dc.descriptionLa evaluación del deterioro de las vías en Colombia se realiza por medio de inventarios manuales e inspecciones visuales. Los métodos de evaluación del estado de las vías adoptados por el INVIAS (Instituto Nacional de Vías) son VIZIR (Visión Inspection de Zones et Itinéraires Á Risque) y PCI (Paviment Condition Index). Estos determinan la gravedad de daño en pavimento flexible y rígido; sin embargo, pueden ser tediosos, subjetivos y requieren de la experiencia de un evaluador, lo que evidencia la necesidad de desarrollar metodologías de evaluación del estado de las vías. Este documento presenta una metodología para la evaluación de los deterioros presentes en pavimento flexible usando técnicas de fotogrametría terrestre y redes neuronales que está compuesta por seis etapas: i. Captura de las imágenes, ii. Preprocesamiento de las imágenes, iii. Segmentación mediante técnicas de detección de bordes, iv. Extracción de las características, v. Clasificación utilizando redes neuronales, y vi. Evaluación del área de afectación del deterioro. La metodología se evaluó con imágenes reales de pavimento con tres tipos de deterioro: grieta longitudinal, piel de cocodrilo y bache. Como clasificador se utilizó una red neuronal multicapa con configuración (12 12 3), entrenada utilizando el algoritmo Levenberg Marquardt de retropropagación. Se obtuvo una exactitud del 96 % en el clasificador, una sensibilidad de 93.33 % y una índice kappa de 0.936. Esta metodología es la base para la creación de un sistema automatizado de evaluación del deterioro presente en las vías, el cual puede contribuir en la reducción en tiempo y costo en los planes de gestión de mantenimiento de la infraestructura vial.es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.formattext/html
dc.formatapplication/zip
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1686/1811
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1686/1817
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1686/1832
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1686/1924
dc.relation/*ref*/L. F. Macea; L. Morales; L. G. Márquez, “Un sistema de gestión de pavimentos basado en nuevas tecnologías para países en vía de desarrollo,” Ing. Investig. Tecnol., vol. 17, no. 2, pp. 223–236, Apr. 2016. https://doi.org/10.1016/j.riit.2016.06.007
dc.relation/*ref*/V. G. Cerón, “Evaluación y comparación de metodologías VIZIR y PCI sobre el tramo de vía en pavimento flexible y rígido de la vía: Museo Quimbaya-CRQ Armenia Quindío (PR 00+000-PR 02+600),” (trabajo de especialización) Facultad de ingeniería y arquitectura, Universidad Nacional de Colombia. Manizales. 2006. http://bdigital.unal.edu.co/747/1/vivianaceronbermudez.2006.pdf
dc.relation/*ref*/H. Rababaah; D. Vrajitoru; J. Wolfer, “Asphalt Pavement Crack Classification: A Comparative Study of Three AI Approaches: Multilayer Perceptron, Genetic Algorithms and Self-Organizing Maps,” (Tesis de Mestría), Indiana University South Bend, 2005. https://www.researchgate.net/publication/241525602_ASPHALT_PAVEMENT_CRACK_CLASSIFICATION_A_COMPARISON_OF_GA_MLP_AND_SOM
dc.relation/*ref*/J. Valença; E. Júlio; H. Araújo, “Aplicações De Fotogrametria Na Monitorização De Estruturas,” in 2007 ICM In National Conference on A Instrumentação Científica e a Metrologia Aplicadas à Engenharia Civil, Lisboa 2007. pp. 2- 9. https://www.researchgate.net/publication/236941971_Aplicacoes_de_fotogrametria_na_monitorizacao_de_estruturas
dc.relation/*ref*/Y. Sun; E. Salari; E. Chou, “Automated pavement distress detection using advanced image processing techniques,” in 2009 IEEE International Conference on Electro/Information Technology, Windsor. 2009, pp. 373–377. http://doi.org/10.1109/EIT.2009.5189645
dc.relation/*ref*/S. Alamri, N. Kalyankar; K. S. D., “Image Segmentation by Using Edge Detection,” IJCSE Int. J. Comput. Sci. Eng., vol. 2, no. 3, 2010, pp. 804–807. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.302.9543&rep=rep1&type=pdf
dc.relation/*ref*/H. Mu; D. Qi, “Pattern Recognition of Wood Defects Types Based on Hu Invariant Moments,” in 2009 2nd International Congress on Image and Signal Processing, Tianjin. 2009, pp. 1–5. https://doi.org/10.1109/CISP.2009.5303866
dc.relation/*ref*/T. C. Ling, “Evaluation of cracks and disintegrations using close range digital photogrammetry and image processing technique,” (Tesis de Maestría), Faculty of Civil Engineering, Universiti Teknologi Malaysia, 2005. http://eprints.utm.my/id/eprint/3484/
dc.relation/*ref*/A. Ragnoli; M. R. De Blasiis; A. Di Benedetto, “Pavement Distress Detection Methods: A Review,” Infrastructures, vol. 3, no. 4, p. 58, Dec. 2018. https://doi.org/10.3390/infrastructures3040058
dc.relation/*ref*/S. Wu; J. Fang; X. Zheng; X. Li, “Sample and Structure-Guided Network for Road Crack Detection,” IEEE Access, vol. 7, pp. 130032–130043, Sep. 2019. https://doi.org/10.1109/ACCESS.2019.2940767
dc.relation/*ref*/L. Li; L. Sun; G. Ning; S. Tan, “Automatic Pavement Crack Recognition Based on BP Neural Network,” Promet Traffic Transportation, vol. 26, no. 1, pp. 11–22, Feb. 2014. https://doi.org/10.7307/ptt.v26i1.1477
dc.relation/*ref*/M. Gavilán et al., “Adaptive Road Crack Detection System by Pavement Classification,” Sensors, vol. 11, no. 10, pp. 9628–9657, Oct. 2011. https://doi.org/10.3390/s111009628
dc.relation/*ref*/A. Banharnsakun, “Hybrid ABC-ANN for pavement surface distress detection and classification,” Int. J. Mach. Learn. Cybern., vol. 8, no. 2, pp. 699–710, Apr. 2017. https://doi.org/10.1007/s13042-015-0471-1
dc.relation/*ref*/H. Gong; Y. Sun; W. Hu; B. Huang, “Neural networks for fatigue cracking prediction using outputs from pavement mechanistic-empirical design,” Int. J. Pavement Eng., pp. 1–11, Feb. 2019. https://doi.org/10.1080/10298436.2019.1580367
dc.relation/*ref*/G. K. Choudhary; S. Dey, “Crack detection in concrete surfaces using image processing, fuzzy logic, and neural networks,” in 2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI), China. 2012, pp. 404–411. https://doi.org/10.1109/ICACI.2012.6463195
dc.relation/*ref*/M. Qi; B. Zhang; Y. Xu; H. Xin; G. Cheng, “Linear Camera Calibration by Single Image Based on Distortion Correction,” in Proceedings of the 2nd International Conference on Graphics and Signal Processing, Sydney. 2018, pp. 21–25. https://doi.org/10.1145/3282286.3282303
dc.relation/*ref*/E. Rivas; J. Mendiola; G. Herrera; C. Gonzáles; M. Trejo; G. Ríos, “Mejora de Contraste y Compensación en Cambios de la Iluminación,” Comput. Sist., vol. 10, no. 4, pp. 357–371, 2007. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-55462007000200004
dc.relation/*ref*/L. Ying; E. Salari, “Beamlet Transform-Based Technique for Pavement Crack Detection and Classification,” Comput. Aided Civ. Infrastruct. Eng., vol. 25, no. 8, pp. 572–580, Jun. 2010. https://doi.org/10.1111/j.1467-8667.2010.00674.x
dc.relation/*ref*/M. Carrasco Zambrano, “Segmentación de Fallas en Soldaduras Utilizando Técnicas de Procesamiento Digital de Imágenes,” (Tesis de Maestría), Universidad de Santiago De Chile, Chile, 2003. http://www.vizzion.cl/files/MasterThesis_carrasco.pdf
dc.relation/*ref*/L. Ling; H. Peikang; W. Xiaohu; P. Xudong, “Image edge detection based on beamlet transform,” J. Syst. Eng. Electron., vol. 20, no. 1, pp. 1–5, Feb. 2009. https://ieeexplore.ieee.org/document/6074606
dc.relation/*ref*/N. Wei; X. Zhao; X. Y. Dou; H. Song; T. Wang, “Beamlet Transform Based Pavement Image Crack Detection,” in 2010 International Conference on Intelligent Computation Technology and Automation, Changsha. 2010, pp. 881–883. https://doi.org/10.1109/ICICTA.2010.755
dc.relation/*ref*/A. Ouyang; Y. Wang, “Edge Detection in Pavement Crack Image with Beamlet Transform,” in 2nd International Conference on Electronic & Mechanical Engineering and In-formation Technology, Sep. 2012, pp 2036-2039. https://doi.org/10.2991/emeit.2012.451
dc.relation/*ref*/Z. Lin; X. Zhao, “Geometrical flow-guided fast beamlet transform for crack detection,” IET Image Process., vol. 12, no. 3, pp. 382–388, Nov. 2018. https://doi.org/10.1049/iet-ipr.2017.0747
dc.relation/*ref*/A. Cubero-Fernandez; F. J. Rodriguez-Lozano; R. Villatoro; J. Olivares; J. M. Palomares, “Efficient pavement crack detection and classification,” EURASIP J. Image Video Process., vol. 2017, no. 39, pp. 1–11, Dec. 2017. https://doi.org/10.1186/s13640-017-0187-0
dc.relation/*ref*/E. A. Sobrado Malpartida, “Sistema de visión artificial para el reconocimiento y manipulación de objetos utilizando un brazo robot,” (Tesis de Maestría), Pontificia Universidad Católica del Perú, Lima, 2003. http://tesis.pucp.edu.pe/repositorio/handle/20.500.12404/68
dc.relation/*ref*/M. E. G. Mital; H. V. Villaruel; E. P. Dadios, “Neural Network Implementation of Divers Sign Language Recognition based on Eight Hu-Moment Parameters,” in 2018 2nd International Conference on Informatics and Computational Sciences (ICICoS), Semarang. 2018, pp. 1–6. https://doi.org/10.1109/ICICOS.2018.8621642
dc.relation/*ref*/J. Zhao; X. Wang, “Vehicle-logo recognition based on modified HU invariant moments and SVM,” Multimed. Tools Appl., vol. 78, no. 1, pp. 75–97, Oct. 2017. https://doi.org/10.1007/s11042-017-5254-0
dc.relation/*ref*/H. S. Yoo; Y. S. Kim, “Development of a crack recognition algorithm from non-routed pavement images using artificial neural net-work and binary logistic regression,” KSCE J. Civ. Eng., vol. 20, no. 4, pp. 1151–1162, May 2016. https://doi.org/10.1007/s12205-015-1645-9
dc.relation/*ref*/Universidad Nacional sede Bogotá; Ministerio de transporte Instituto Nacional de Vías INVIAS, “Estudio e investigación del estado actual de las obras de la red nacional de carreteras Convenio Interadministrativos 0587-03. Manual para la inspección visual de Pavimentos Flexibles.” Bogotá, octubre 2006. https://www.invias.gov.co/index.php/archivo-y-documentos/documentos-tecnicos/manuales-de-inspeccion-de-obras/974-manual-para-la-inspeccion-visual-de-pavimentos-flexibles/file
dc.relation/*ref*/N.-D. Hoang; Q.-L. Nguyen, “A novel method for asphalt pavement crack classification based on image processing and machine learning,” Eng. Comput., vol. 35, no. 2, pp. 487–498, Apr. 2019. https://doi.org/10.1007/s00366-018-0611-9
dc.rightsCopyright (c) 2020 TecnoLógicasen-US
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0en-US
dc.sourceTecnoLógicas; Vol. 24 No. 50 (2021); e1686en-US
dc.sourceTecnoLógicas; Vol. 24 Núm. 50 (2021); e1686es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectTerrestrial photogrammetryen-US
dc.subjectneural networksen-US
dc.subjectpavement crackingen-US
dc.subjectroadwaysen-US
dc.subjectimage processingen-US
dc.subjectFotogrametría terrestrees-ES
dc.subjectredes neuronaleses-ES
dc.subjectgrietas en el pavimentoes-ES
dc.subjectvías terrestreses-ES
dc.subjectprocesamiento de imágeneses-ES
dc.titleDamage Evaluation in Flexible Pavement Using Terrestrial Photogrammetry and Neural Networksen-US
dc.titleEvaluación de daños en pavimento flexible usando fotogrametría terrestre y redes neuronaleses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem