Mostrar el registro sencillo del ítem

Evaluación in silico de péptidos bioactivos derivados de la digestión de proteínas presentes en la leche de bovino (B. taurus), oveja (O. aries), cabra (C. hircus) y búfalo (B. bubalis)

dc.creatorBarrero , Jorge A.
dc.creatorCruz , Claudia M.
dc.creatorCasallas, Jenny
dc.creatorVásquez, Juan S.
dc.date2021-01-30
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1731
dc.identifier10.22430/22565337.1731
dc.descriptionThe growing demand for food with high nutritional value has led to the replacement of bovine milk with milk from other ruminants. The protein fraction in milk is relatively constant among species and includes caseins ( S1-casein, -casein, and 𝜅-casein) and whey proteins ( -lactalbumin and -lactoglobulin). Current studies into milk derived bioactive peptides focus on proteins obtained from a single species and are conducted using non-human proteases. In this paper, we make a quantitative comparison of the bioactive peptides obtained from the caseins and whey proteins present in bovine (Bos taurus), sheep (Ovis aries), goat (Capra hircus), and buffalo (Bubalus bubalis) milk. The study is carried out by in silico digestion with the following proteolytic enzymes found in the human digestive system: pepsin (EC 3.4.23.1), trypsin (EC 3.4.21.4), and chymotrypsin (EC 3.4.21.1). In silico digestion and bioactive peptides were characterized using the BIOPEP-UMW database. Quantitative evaluation was carried out by calculating the bioactive peptides release frequencies. As a result, we found eleven types of biologically active peptides (stimulants, renin inhibitors, DPP4 inhibitors, antioxidants, ACE inhibitors, DPP3 inhibitors, hypocholesterolemic agents, CaMPDE inhibitors, regulators, anticarcinogenic agents, and immunomodulators). According to the findings, DPP4 inhibitors had the highest frequency of release, turning milk into a potential source of metabolites that suppress DPP4 activity, which, in turn, could lead to a reduced degradation of incretin hormones. Despite the different values ​​in their frequency of release, the total number of bioactive peptides did not show a statistically significant difference (p> 0.05) among the milk proteins from each of the four species under study.en-US
dc.descriptionLa creciente demanda de alimentos de alto valor nutricional ha inclinado el consumo de lácteos de leche bovina por leche proveniente de otras especies de rumiantes; no obstante, la fracción proteica de la leche es relativamente constante y se compone de caseínas: S1-caseína, -caseína, 𝜅-caseína, y seroproteínas; -lactoalbúmina y -lactoglobulina. En la actualidad, los estudios de péptidos bioactivos derivados de la leche se centran en proteínas obtenidas de una única especie y se efectúan empleando enzimas ajenas al sistema digestivo humano. La presente investigación realizó una comparación cuantitativa de los péptidos bioactivos obtenidos de las caseínas y seroproteínas presentes en la leche de bovino (Bos taurus), oveja (Ovis aries), cabra (Capra hircus) y búfalo (Bubalus bubalis) a partir de procesos de digestión in silico catalizados por proteasas presentes en el sistema digestivo humano: pepsina (EC 3.4.23.1), tripsina (EC 3.4.21.4) y quimotripsina (EC 3.4.21.1). La caracterización de péptidos bioactivos y la digestión in silico fue realizada mediante BIOPEP-UMW. La evaluación cuantitativa se efectuó a partir del cálculo de frecuencias de liberación. Los resultados mostraron once clases de péptidos con acción biológica: estimulantes, inhibidores de Renina, inhibidores de DPP4, antioxidantes, inhibidores de ACE, inhibidores de DPP3, hipocolesterolémicos, inhibidores de CaMPDE, reguladores, anticancerígenos e inmunomoduladores. Los péptidos inhibidores de DPP4 presentaron la mayor frecuencia de liberación, lo que sitúa a la leche como una potencial fuente de metabolitos supresores de la acción proteolítica de DPP4 en la degradación de incretinas. Pese a los distintos valores de frecuencias de liberación, los cuatro perfiles totales de péptidos bioactivos correspondientes a la leche de cada especie no mostraron una diferencia estadísticamente significativa (p>0.05).es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.formattext/html
dc.formatapplication/zip
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1731/1839
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1731/1868
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1731/1898
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1731/1928
dc.relation/*ref*/A. S. Wiley, “The Evolution of Lactase Persistence: Milk Consumption, Insulin-Like Growth Factor I, and Human Life-History Parameters,” Q. Rev. Biol., vol. 93, no. 4, pp. 319-345, Dec. 2018. https://doi.org/10.1086/700768
dc.relation/*ref*/S. Singhal; R. D. Baker; S. S. Baker, “A Comparison of the Nutritional Value of Cowʼs Milk and Nondairy Beverages,” J. Pediatr. Gastroenterol. Nutr., vol. 64, no. 5, pp. 799-805, Apr. 2017. https://doi.org/1097/MPG.0000000000001380
dc.relation/*ref*/S. Gerosa; J. Skoet, “Milk availability trends in production and demand and medium-term outlook,” Food and Agriculture Organization of the United Nations, FAO. Rome, Italy, 2012. https://doi.org/10.22004/ag.econ.289000
dc.relation/*ref*/R. Pietrzak-Fiećko; A. M. Kamelska-Sadowska, “The Comparison of Nutritional Value of Human Milk with Other Mammals’ Milk,” Nutrients, vol 12, no. 5, pp. 1404, May. 2020. https://doi.org/10.3390/nu12051404
dc.relation/*ref*/S. B. Dergal, “Leche,” in Química de los alimentos, 4th ed. Distrito Federal: Pearson Educación, pp. 603-629. 2006.
dc.relation/*ref*/E. Vargas-Bello-Pérez; R. I. Márquez-Hernández; L. E. Hernández-Castellano, “Bioactive peptides from milk: animal determinants and their implications in human health,” J. Dairy Res, vol. 86, no. 2, pp. 136–144, Jun. 2019. https://doi.org/10.1017/S0022029919000384
dc.relation/*ref*/E.B.-M. Daliri; D.H. Oh; B.H. Lee, “Bioactive Peptides,” Foods, vol. 6, no. 5, Apr. 2017. https://doi.org/10.3390/foods6050032
dc.relation/*ref*/S. D. Nielsen; R. L. Beverly; Y. Qu; D. C. Dallas, “Milk bioactive peptide database: A comprehensive database of milk protein-derived bioactive peptides and novel visualization,” Food Chem., vol. 232, pp. 673-682. Apr. 2017.
dc.relation/*ref*/Y. Wada; B. Lönnerdal, “Bioactive peptides released from in vitro digestion of human milk with or without pasteurization,” Pediatr. Res., vol. 77, no. 4, pp. 546–553. Jan. 2015. https://doi.org/10.1038/pr.2015.10
dc.relation/*ref*/M. Tu; S. Cheng; W. Lu; M. Du, “Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: Sequence, structure, and functions,” Trends Anal. Chem., vol. 105, pp. 7-17. Aug. 2018. https://doi.org/10.1016/j.trac.2018.04.005
dc.relation/*ref*/M. Barati et al., “An in silico model to predict and estimate digestion-resistant and bioactive peptide content of dairy products: A primarily study of a time-saving and affordable method for practical research purposes,” LWT, vol. 130. Aug. 2020. https://doi.org/10.1016/j.lwt.2020.109616
dc.relation/*ref*/C. Acquah; Y. W. Chan; S. Pa; D. Agyei; C. C. Udenigwe, “Structure-informed separation of bioactive peptides,” J. Food Biochem., vol. 43, no. 1. 2019. https://doi.org/10.1111/jfbc.12765
dc.relation/*ref*/R. J. Fitz Gerald; M. Cermeño; M. Khalesi; T. Kleekayai; M. Amigo-Benavent, “Application of in silico approaches for the generation of milk protein-derived bioactive peptides,” J. Funct. Foods, vol. 64. Jan. 2020. https://doi.org/10.1016/j.jff.2019.103636
dc.relation/*ref*/F. Pazos; M. Chagoyen. Practical protein bioinformatics, 1 ed. New York: Springer International, 2016. https://doi.org/10.1007/978-3-319-12727-9
dc.relation/*ref*/S. Choudhuri, Bioinformatics for beginners: Genes, genomes, molecular evolution, databases and analytical tools, 1 ed. Amsterdam: Elsevier, 2014. https://doi.org/10.1016/C2012-0-07153-0
dc.relation/*ref*/P. Minkiewicz; A. Iwaniak; M. Darewicz, “BIOPEP-UWM Database of Bioactive Peptides: Current Opportunities,” Int. J. Mol. Sci., vol. 20, no. 23, Nov. 2019. https://doi:10.3390/ijms20235978
dc.relation/*ref*/E. Gasteiger; C. Hoogland; A. Gattiker; S. Duvaud; M. R. Wilkins; R. D. Appel; A. Bairoch, “Protein Identification and Analysis Tools on the ExPASy Server,” The Proteomics Protocols Handbook. Springer Protocols Handbooks, Walker J.M. (eds), pp. 571-607, 2005. https://doi.org/10.1385/1-59259-890-0:571
dc.relation/*ref*/B. Keil, Specificity of proteolysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992.
dc.relation/*ref*/F. Sievers et al., “Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega,” Mol. Syst. Biol., vol. 7, no. 1, pp. 539, Jan. 2011. https://doi.org/10.1038/msb.2011.75
dc.relation/*ref*/Y. Dekel et al., “Dispersal of an ancient retroposon in the TP53 promoter of Bovidae: Phylogeny, novel mechanisms, and potential implications for cow milk persistency,” BMC Genom., vol. 16, no. 1, pp. 53, Feb. 2015. https://doi.org/10.1186/s12864-015-1235-8
dc.relation/*ref*/K. Chikuni; Y. Mori; T. Tabata; M. Saito; M. Monma; M. Kosugiyama, “Molecular phylogeny based on the κ-casein and cytochrome b sequences in the mammalian suborder Ruminantia,” J. Mol. Evol., vol. 41, no.6, pp. 859-866, Dec. 1995. https://doi.org/10.1007/BF00173165
dc.relation/*ref*/M. Dziuba; B. Dziuba; A. Iwaniak, “Milk proteins as precursors of bioactive peptides,” Acta Sci. Pol., Technol. Aliment., vol. 8, no. 1, pp. 71-90, 2009. https://www.food.actapol.net/volume8/issue1/abstract-7.html
dc.relation/*ref*/S. Rani; K. Pooja; G. Pal, “Exploration of potential angiotensin converting enzyme inhibitory peptides generated from enzymatic hydrolysis of goat milk proteins,” Biocatal. Agric. Biotechnol., vol. 11, pp. 83-88. Jul. 2017. https://doi.org/10.1016/j.bcab.2017.06.008
dc.relation/*ref*/S. Li et al., “Formation of bioactive peptides during simulated gastrointestinal digestion is affected by αs1-casein polymorphism in buffalo milk,” Food Chem., vol. 313, May. 2020. https://doi.org/10.1016/j.foodchem.2020.126159
dc.relation/*ref*/H. Nguyen; J. Gathercole; L. Day; J. Dalziel, “Differences in peptide generation following in vitro gastrointestinal digestion of yogurt and milk from cow, sheep and goat,” Food Chem., vol. 317. Jul. 2020. https://doi.org/10.1016/j.foodchem.2020.126419
dc.relation/*ref*/M. Morifuji; J. Koga; K. Kawanaka; M. Higuchi, “Branched-chain amino acid-containing dipeptides, identified from whey protein hydrolysates, stimulate glucose uptake in L6 myotubes and isolated skeletal muscles,” J. Nutr. Sci. Vitaminol., vol. 55, pp. 81-86, 2009. https://doi.org/10.3177/jnsv.55.81
dc.relation/*ref*/C. C. Udenigwe; R. E. Aluko, “Food Protein-Derived Bioactive Peptides: Production, Processing, and Potential Health Benefits,” J. Food Sci., vol. 77, no. 1, Nov. 2011. https://doi.org/10.1111/j.1750-3841.2011.02455.x
dc.relation/*ref*/A. Iwaniak; D Mogut, “Metabolic Syndrome-Preventive Peptides Derived from Milk Proteins and Their Presence in Cheeses: A Review,” Appl. Sci., vol. 10, no. 8, pp. 2772, Apr. 2020. https://doi.org/10.3390/app10082772
dc.relation/*ref*/F. Tonolo et al., “Milk-derived bioactive peptides exhibit antioxidant activity through the Keap1-Nrf2 signaling pathway,” J. Funct. Foods, vol. 64, Jan. 2020. https://doi:10.1016/j.jff.2019.103696
dc.relation/*ref*/Q. Yousafi et al., “In Silico Evaluation of Food Derived Bioactive Peptides as Inhibitors of Angiotensin Converting Enzyme (ACE),” Int. J. Pept. Res. Ther., Jun. 2020. https://doi.org/10.1007/s10989-020-10090-y
dc.relation/*ref*/B. Deniau et al., “Circulating dipeptidyl peptidase 3 is a myocardial depressant factor: dipeptidyl peptidase 3 inhibition rapidly and sustainably improves haemodynamics.” Eur. J. Heart Fail., vol. 22, no. 2, pp. 290-299, Feb. 2020. https://doi.org/10.1002/ejhf.1601
dc.relation/*ref*/Z. Karami; B. Akbari-adergani, “Bioactive food derived peptides: a review on correlation between structure of bioactive peptides and their functional properties,” J. Food Sci. Technol., vol. 56, pp. 535–547, 2019. https://doi.org/10.1007/s13197-018-3549-4
dc.relation/*ref*/I. D. Nwachukwu; A. M. Alashi; P. C. Zahradka; R. E. Aluko, “Transport, Bioavailability, Safety, and Calmodulin-Dependent-Phosphodiesterase-Inhibitory Properties of Flaxseed-Derived Bioactive Peptides,” J. Agric. Food Chem., vol. 67, no. 5, pp. 1429-1436, 2019. https://doi.org/10.1021/acs.jafc.8b06299
dc.relation/*ref*/D. A. Ignat'ev; V. V. Vorob'ev; R. K. Ziganshin, “Effects of a number of short peptides isolated from the brain of the hibernating ground squirrel on the eeg and behavior in rats,” Neurosci. Behav. Physiol., vol. 28, no. 2, pp. 158-166, Mar. 1998. https://doi.org/10.1007/bf02461962
dc.relation/*ref*/W. Wang et al., “PGPIPN, a Therapeutic Hexapeptide, Suppressed Human Ovarian Cancer Growth by Targeting BCL2,” Plos ONE, vol. 8, no. 4, 2013. https://doi.org/10.1371/journal.pone.0060701
dc.relation/*ref*/U. Hopfer, “Digestion and Absorption of Basic Nutritional Constituents” in Textbook of Biochemistry with clinical correlations, 7ed. New York: J. Wiley & Sons, 2011, pp. 1043-1049
dc.relation/*ref*/H. Punia et al., “Identification and Detection of Bioactive Peptides in Milk and Dairy Products: Remarks about Agro-Foods,” Molecules, vol. 25, no. 15, pp. 3328, Jul. 2020. https://doi.org/10.3390/molecules25153328
dc.relation/*ref*/A. B. Nongonierma; R. J. FitzGerald, “Enhancing bioactive peptide release and identification using targeted enzymatic hydrolysis of milk proteins,” Anal. Bioanal. Chem., vol. 410, pp. 3407–3423. 2018. https://doi.org/10.1007/s00216-017-0793-9
dc.relation/*ref*/A. B. Nongonierma; C. Mooney; D. C. Shields; R. J. Fitzgerald, “In silico approaches to predict the potential of milk protein-derived peptides as dipeptidyl peptidase IV (DPP-IV) inhibitors,” Peptides, vol. 57, pp. 43-51, Jul. 2014. https://doi.org/10.1016/j.peptides.2014.04.018
dc.relation/*ref*/A. B. Nongonierma; M. Lalmahomed; S. Paolella; R. J. Fitzgerald, “Milk protein isolate (MPI) as a source of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides,” Food Chem., vol. 231, pp. 202-211, Sep. 2017. https://doi.org/10.1016/j.foodchem.2017.03.123
dc.relation/*ref*/I. Lacroix; X. Chen; D. Kitts; E. Li-Chan, “Investigation into the bioavailability of milk protein-derived peptides with dipeptidyl-peptidase IV inhibitory activity using Caco-2 cell monolayers,” Food Funct., vol. 8, no. 2, pp. 701-709. Jan. 2017. https://doi.org/10.1039/C6FO01411A
dc.relation/*ref*/M. H. El-Salam; S. El-Shibiny, “Bioactive Peptides of Buffalo, Camel, Goat, Sheep, Mare, and Yak Milks and Milk Products,” Food Rev. Int., vol. 29, no. 1, pp. 1-23, Sep. 2012. https://doi.org/10.1080/87559129.2012.692137
dc.relation/*ref*/A. Mohapatra; A. K. Shinde; R. Singh, “Sheep milk: A pertinent functional food,” Small Ruminant Res., vol. 181, pp. 6-11, Dec. 2019. https://doi.org/10.1016/j.smallrumres.2019.10.002
dc.relation/*ref*/S. Stergiadis; N. P. Nørskov; S. Purup; I. Givens; M. R. Lee, “Comparative Nutrient Profiling of Retail Goat and Cow Milk,” Nutrients, vol. 11, no. 10, pp. 2282, Sep. 2019. https://doi.org/10.3390/nu11102282
dc.relation/*ref*/N. D’Onofrio et al., “Antioxidant and Anti-Inflammatory Activities of Buffalo Milk δ-Valerobetaine,” J. Agric. Food Chem., vol. 67, no. 6, pp. 1702-1710, Jan. 2019. https://doi.org/10.1021/acs.jafc.8b07166
dc.relation/*ref*/[46 H. Gong et al., “Identification of novel peptides from goat milk casein that ameliorate high-glucose-induced insulin resistance in HepG2 cells,” J. Dairy Sci., vol 103, no. 6, pp. 4907-4918, Jun. 2020. https://doi.org/10.3168/jds.2019-17513
dc.relation/*ref*/S. Li et al., “Formation of bioactive peptides during simulated gastrointestinal digestion is affected by αs1-casein polymorphism in buffalo milk,” Food Chem., vol. 313, May. 2020. https://doi.org/10.1016/j.foodchem.2020.126159
dc.relation/*ref*/D. Tagliazucchi; S. Martini; S. Shamsia; A. Helal; A. Conte, “Biological activities and peptidomic profile of in vitro-digested cow, camel, goat and sheep milk,” Int. Dairy J., vol. 81, pp. 19-27, Jun. 2018. https://doi.org/10.1016/j.idairyj.2018.01.014
dc.relation/*ref*/L. L. Baggio et al., “Plasma levels of DPP4 activity and sDPP4 are dissociated from inflammation in mice and humans,” Nature, vol. 11, pp. 3766, 2020. https://doi.org/10.1038/s41467-020-17556-z
dc.relation/*ref*/E. E. Mulvihill; D. J. Drucker, “Pharmacology, physiology and mechanisms of action of dipeptidyl peptidase-4 inhibitors,” Endocr. Rev. vol 35, no. 6, pp. 992–1019, Dec. 2014. https://doi.org/10.1210/er.2014-1035
dc.relation/*ref*/C. F. Deacon, “Metabolism of GIP and the contribution of GIP to the glucose-lowering properties of DPP-4 inhibitors,” Peptides, vol. 125, Mar. 2020. https://doi.org/10.1016/j.peptides.2019.170196
dc.relation/*ref*/G. Sesti et al., “Ten years of experience with DPP-4 inhibitors for the treatment of type 2 diabetes mellitus,” Acta Diabetol., vol. 56, pp. 605–617, Jan. 2019. https://doi.org/10.1007/s00592-018-1271-3
dc.relation/*ref*/K. Tomovic; J. Lazarevic; G. Kocic; M. Deljanin‐Ilic; M. Anderluh; A. Smelcerovic, “Mechanisms and pathways of anti-inflammatory activity of DPP-4 inhibitors in cardiovascular and renal protection,” Med. Res. Rev., vol. 39, no. 1, pp. 404-422, May. 2018. https://doi.org/10.1002/med.21513
dc.relation/*ref*/J. Zhang; Q. Chen; J. Zhong; J. Zhong; C. Liu; B. Zheng; Q. Gong, “DPP-4 Inhibitors as Potential Candidates for Antihypertensive Therapy: Improving Vascular Inflammation and Assisting the Action of Traditional Antihypertensive Drugs,” Front. Immunol., vol. 10, May. 2019. https://doi.org/10.3389/fimmu.2019.01050
dc.relation/*ref*/M. Anderluh; G. Kocic; K. Tomovic; H. Kocic; A. Smelcerovic, “DPP-4 inhibition: А novel therapeutic approach to the treatment of pulmonary hypertension?” Pharmacol. Therapeut., vol. 201, pp. 1-7, Sep. 2019. https://doi.org/10.1016/j.pharmthera.2019.05.007
dc.relation/*ref*/P. Kęska; J. Stadnik; O. Bąk; P. Borowski, “Meat Proteins as Dipeptidyl Peptidase IV Inhibitors and Glucose Uptake Stimulating Peptides for the Management of a Type 2 Diabetes Mellitus In Silico Study,” Nutrients, vol. 11, no. 10, Oct. 2019. https://doi.org/10.3390/nu11102537
dc.relation/*ref*/M.I. El-Sayed; S. Awad; A. Whaba; A. El Attar; M.I. Yousef; M. Zedan, “In Vivo Anti-diabetic and Biological Activities of Milk Protein and Milk Protein Hydrolyaste.,” Adv. Dairy Res., vol. 4, no. 2. 2016. https://doi10.4172/2329-888X.1000154
dc.rightsCopyright (c) 2020 TecnoLógicasen-US
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0en-US
dc.sourceTecnoLógicas; Vol. 24 No. 50 (2021); e1731en-US
dc.sourceTecnoLógicas; Vol. 24 Núm. 50 (2021); e1731es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectBioactive peptidesen-US
dc.subjectin silico digestionen-US
dc.subjectcaseinen-US
dc.subjectwhey proteinsen-US
dc.subjectDPP4 inhibitoren-US
dc.subjectPéptidos bioactivoses-ES
dc.subjectdigestión in silicoes-ES
dc.subjectcaseínaes-ES
dc.subjectseroproteínases-ES
dc.subjectinhibidor de DPP4es-ES
dc.titleIn Silico Evaluation of Bioactive Peptides Derived from the Digestion of Cow (B. taurus), Sheep (O. aries), Goat (C. hircus), and Buffalo (B. bubalis) Milk Proteinsen-US
dc.titleEvaluación in silico de péptidos bioactivos derivados de la digestión de proteínas presentes en la leche de bovino (B. taurus), oveja (O. aries), cabra (C. hircus) y búfalo (B. bubalis)es-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem