Mostrar el registro sencillo del ítem

Modelado de las fuerzas de corte en el torneado de alta velocidad utilizando redes neuronales artificiales

dc.creatorHernández-González, Luis W.
dc.creatorCurra-Sosa, Dagnier A.
dc.creatorPérez-Rodríguez, Roberto
dc.creatorZambrano-Robledo, Patricia D.C.
dc.date2021-04-22
dc.date.accessioned2021-08-19T16:21:25Z
dc.date.available2021-08-19T16:21:25Z
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1671
dc.identifier10.22430/22565337.1671
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/12068
dc.descriptionCutting forces are very important variables in machining performance because they affect surface roughness, cutting tool life, and energy consumption. Reducing electrical energy consumption in manufacturing processes not only provides economic benefits to manufacturers but also improves their environmental performance. Many factors, such as cutting tool material, cutting speed, and machining time, have an impact on cutting forces and energy consumption. Recently, many studies have investigated the energy consumption of machine tools; however, only a few have examined high-speed turning of plain carbon steel. This paper seeks to analyze the effects of cutting tool materials and cutting speed on cutting forces and Specific Energy Consumption (SEC) during dry high-speed turning of AISI 1045 steel. For this purpose, cutting forces were experimentally measured and compared with estimates of predictive models developed using polynomial regression and artificial neural networks. The resulting models were evaluated based on two performance metrics: coefficient of determination and root mean square error. According to the results, the polynomial models did not reach 70 % in the representation of the variability of the data. The cutting speed and machining time associated with the highest and lowest SEC of CT5015-P10 and GC4225-P25 inserts were calculated. The lowest SEC values of these cutting tools were obtained at a medium cutting speed. Also, the SEC of the GC4225 insert was found to be higher than that of the CT5015 tool.en-US
dc.descriptionLas fuerzas de corte son variables muy importantes para el rendimiento del mecanizado, ya que afectan la rugosidad de la superficie, la vida útil de la herramienta de corte y el consumo de energía. La reducción del consumo de energía eléctrica de los procesos de fabricación no solo beneficia económicamente a los fabricantes, sino que también mejora su comportamiento medioambiental. Muchos factores, como el material de la herramienta de corte, la velocidad de corte y el tiempo de mecanizado, afectan la fuerza de corte y el consumo de energía de la máquina. En la actualidad, muchas investigaciones se han realizado sobre el consumo energético de las máquinas herramienta. Sin embargo, la investigación sobre torneado de acero al carbono a alta velocidad es escasa. En este trabajo se estudiaron los efectos de los materiales de las herramientas de corte y su velocidad sobre las fuerzas de corte y el consumo específico de energía en el torneado en seco de alta velocidad de acero AISI 1045. Las fuerzas de corte se determinaron experimentalmente y se compararon con las estimaciones de los modelos predictivos desarrollados mediante regresión polinomial y redes neuronales artificiales. Los modelos obtenidos fueron evaluados según métricas de desempeño como el coeficiente de determinación y la raíz del error cuadrático medio, donde los modelos polinomiales no superaron el 70% en la representación de la variabilidad de los datos. Se determinó la velocidad de corte y el tiempo de mecanizado relacionados con el mayor y menor consumo de energía de las plaquitas CT5015-P10 y GC4225-P25. Los valores más bajos de consumo de energía de estas herramientas se alcanzaron para la velocidad de corte intermedia. Además, la plaquita GC4225 presentó un mayor consumo que la herramienta CT5015.es-ES
dc.formatapplication/pdf
dc.formatapplication/zip
dc.formattext/xml
dc.formattext/html
dc.languageeng
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1671/1968
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1671/2059
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1671/1969
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1671/1972
dc.relation/*ref*/H. Schulz; T. Moriwaki, “High-Speed Machining,” CIRP Annals, vol. 41, no. 2, pp. 637-643, 1992. https://doi.org/10.1016/S0007-8506(07)63250-8
dc.relation/*ref*/J. Xie; F. Liu; H. Qiu, “An integrated model for predicting the specific energy consumption of manufacturing processes,” Int. J. Adv. Manuf. Technol., vol. 85, pp. 1339–1346, Nov. 2015. https://doi.org/10.1007/s00170-015-8033-y
dc.relation/*ref*/R. Tanaka; Y. Yamane; K. Sekiya; N. Narutaki; T. Shiraga, “Machinability of BN free-machining steel in turning,” Int. J. Mach. Tools Manuf., vol. 47, no. 12-13, pp. 1971–1977, Oct. 2007. https://doi.org/10.1016/j.ijmachtools.2007.02.003
dc.relation/*ref*/B. Denkena; R. Ben-Amor; L. De-Leon-García; J. Dege, “Material specific definition of the high speed cutting range,” Int. J. Mach. Mach. Mater., vol. 2, no. 2, pp. 176-185, May. 2007. https://doi.org/10.1504/IJMMM.2007.013781
dc.relation/*ref*/W. S. Lin, “The reliability analysis of cutting tools in the HSM processes,” Archives of Materials Science and Engineering, vol. 30, no. 2, pp. 97-100, Apr. 2008. http://www.amse.acmsse.h2.pl/vol30_2/3028.pdf
dc.relation/*ref*/M. Davies; A. L. Cooke; E. R. Larsen, “High bandwidth thermal microscopy of machining AISI 1045 steel,” CIRP Ann., vol. 54, no. 1, pp. 63-66, Jun. 2005. https://doi.org/10.1016/S0007-8506(07)60050-X
dc.relation/*ref*/S. A. Iqbal; P. T. Mativenga; M. A. Sheikh, “Characterization of machining of AISI 1045 steel over a wide range of cutting speeds. Part 1: Investigation of contact phenomena,” Proc. Inst. Mech. Eng. Part. B. J. Eng. Manuf., vol. 221, no. 5, pp. 909-916, May. 2007. https://doi.org/10.1243/09544054JEM796
dc.relation/*ref*/S. A. Iqbal; P. T. Mativenga; M. A. Sheikh, “Contact length prediction: mathematical models and effect of friction schemes on FEM simulation for conventional to HSM of AISI 1045 steel,” Int. J. Mach. Mach. Mater, vol. 3, no. 1-2, pp. 18-33, Mar. 2008. https://doi.org/10.1504/IJMMM.2008.017622
dc.relation/*ref*/S. A. Iqbal; P. T. Mativenga; M. A. Sheikh, “A comparative study of the tool–chip contact length in turning of two engineering alloys for a wide range of cutting speeds,” Int. J. Adv. Manuf. Technol., vol. 42, no. 30, pp. 30–40, Jul. 2009. https://doi.org/10.1007/s00170-008-1582-6
dc.relation/*ref*/Y. Quan; Z. He; Y. Dou, “Cutting heat dissipation in high-speed machining of carbon steel based on the calorimetric method,” Front. Mech. Eng. China, vol. 3, pp. 175–179, Apr. 2008. https://doi.org/10.1007/s11465-008-0022-5
dc.relation/*ref*/M. Stanford; P. M. Lister; C. Morgan; K. A. Kibble, “Investigation into the use of gaseous and liquid nitrogen as a cutting fluid when turning BS 970-80A15 (En32b) plain carbon steel using WC–Co uncoated tooling,” J. Mater. Process. Technol., vol. 209, no. 2, pp. 961-972, Jan. 2009. https://doi.org/10.1016/j.jmatprotec.2008.03.003
dc.relation/*ref*/A. E. Diniz; R. Micaroni; A. Hassui, “Evaluating the effect of coolant pressure and flow rate on tool wear and tool life in the steel turning operation,” Int. J. Adv. Manuf. Technol., vol. 50, pp. 1125-1133, Mar. 2010. https://doi.org/10.1007/s00170-010-2570-1
dc.relation/*ref*/E. Y. Triblas Adesta; M. Riza; M. F. Hazza; D. Agusman, “Tool wear and surface finish investigation in high speed turning using cermet insert by applying negative rake angles,” European Journal of Scientific Research, vol. 38, no. 2, pp. 180-188, Dec. 2009. https://www.researchgate.net/publication/286940580_Tool_Wear_and_Surface_Finish_Investigation_in_High_Speed_Turning_Using_Cermet_Insert_by_Applying_Negative_Rake_Angles
dc.relation/*ref*/E. Ozlu; A. Molinari; E. Budak, “Two-zone analytical contact model applied to orthogonal cutting," Mach. Sci. Techno, vol. 14, no. 3, pp. 323-343, Nov. 2010. https://doi.org/10.1080/10910344.2010.512794
dc.relation/*ref*/T. Özel; A. Esteves; J. Davim, “Neural network process modelling for turning of steel parts using conventional and wiper inserts”, Mach. Sci. Technol, vol. 35, no. 1/2, pp. 246-258, Jan. 2009. http://dx.doi.org/10.1504/IJMPT.2009.025230
dc.relation/*ref*/M. F. Rajemi; P. T. Mativenga; A. Aramcharoen, "Sustainable machining: selection of optimum turning conditions based on minimum energy considerations," J. Clean. Prod, vol. 18, no. 10-11, pp. 1059–1065, Jul. 2010. https://doi.org/10.1016/j.jclepro.2010.01.025
dc.relation/*ref*/P. C. Zambrano Robledo; M. P. Guerrero Mata; L. W. Hernández Gonzalez; R. Pérez Rodriguez; L. Dumitrescu, “Efecto del volumen de metal cortado y de la velocidad de corte en el desgaste de la herramienta durante el torneado de alta velocidad del acero AISI 1045,” Ingeniería y Desarrollo, vol. 29, no.1, pp. 61-83, Jun. 2011. https://dialnet.unirioja.es/servlet/articulo?codigo=3705761
dc.relation/*ref*/W. Stachurski; S. Midera; B. Kruszyński, “Determination of mathematical formulae for the cutting force Fc during the turning of C45 steel,” Mechanics and Mechanical Engineering, vol. 16, no.2, pp. 73–79, Jan. 2012. http://www.kdm.p.lodz.pl/articles/2012/1_S_M_K.pdf
dc.relation/*ref*/L. W. Hernández Gonzalez; R. Pérez Rodriguez; P. C. Zambrano Robledo; H. R. Siller Carrillo; H. Toscano Reyes, “Estudio del rendimiento del torneado de alta velocidad utilizando el coeficiente de dimensión volumétrica de la fuerza de corte resultante,” Rev. Metal., vol. 49, no.4, Jul.-Ago. 2013. https://doi.org/10.3989/revmetalm.1226
dc.relation/*ref*/A. Qasim; S. Nisar; A. Shah; M. Saeed Khalid; M. Sheikh, “Optimization of process parameters for machining of AISI-1045 steel using Taguchi design and ANOVA,” Simul. Model. Pract. Theory, vol. 59, pp. 36–51, Dec. 2015. https://doi.org/10.1016/j.simpat.2015.08.004
dc.relation/*ref*/E. A. Rahim; M. R. Ibrahim; A. A. Rahim; S. Aziz; Z. Mohid, “Experimental investigation of minimum quantity lubrication (MQL) as a sustainable cooling technique,” Procedia CIRP, vol. 26, pp. 351-354, Mar. 2015. https://doi.org/10.1016/j.procir.2014.07.029
dc.relation/*ref*/G. Kant, “Prediction and optimization of machining parameters for minimizing surface roughness and power consumption during turning of AISI 1045 steel,” (PhD. Thesis), Birla Institute of Technology & Science, Pilani, India, 2016. http://hdl.handle.net/10603/125400
dc.relation/*ref*/S. Paul; P. P. Bandyopadhyay; S. Paul, “Minimisation of specific cutting energy and back force in turning of AISI 1060 steel,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 232, no. 11, pp. 1-11, Jan. 2018. https://doi.org/10.1177/0954405416683431
dc.relation/*ref*/K. Singh Sangwan; G. Kant, “Optimization of machining parameters for improving energy efficiency using integrated response surface methodology and genetic algorithm approach,” Procedia CIRP, vol. 61, pp. 517 – 522, Apr. 2017. https://doi.org/10.1016/j.procir.2016.11.162
dc.relation/*ref*/N. Xie; J. Zhou; B. Zheng, “Selection of optimum turning parameters based on cooperative optimization of minimum energy consumption and high surface quality,” Procedia CIRP, vol. 72, pp. 1469–1474, Jun. 2018. https://doi.org/10.1016/j.procir.2018.03.099
dc.relation/*ref*/A. T. Abbas; F. Benyahia; M. M. El Rayes; C. Pruncu; M. A. Taha; H. Hegab, “Towards optimization of machining performance and sustainability aspects when turning AISI 1045 steel under different cooling and lubrication strategies,” Materials, vol. 12, no. 18, pp. 2-17, Sep. 2019. https://doi.org/10.3390/ma12183023
dc.relation/*ref*/S. Makhfi; R. Velasco; M. Habak; K. Haddouche; P. Vantomme, “An optimized ANN approach for cutting forces prediction in AISI 52100 bearing steel hard turning,” Sci. Technol, vol. 3, no. 1, pp. 24-32, 2013. http://article.sapub.org/10.5923.j.scit.20130301.03.html
dc.relation/*ref*/Ş. Karabulut, “Optimization of surface roughness and cutting force during AA7039/Al2O3 metal matrix composites milling using neural networks and Taguchi method,” Measurement, vol. 66, pp. 139–149, Apr. 2015. https://doi.org/10.1016/j.bios.2015.01.027
dc.relation/*ref*/S. Dahbi; L. Ezzine; H. El Moussami, “Modeling of cutting performances in turning process using artificial neural networks,” Int. J. Eng. Bus. Manag, vol. 9, pp. 1-13, Jul. 2017. https://doi.org/10.1177/1847979017718988
dc.relation/*ref*/M. Hanief; M. F. Wani; M. S. Charoo, “Modeling and prediction of cutting forces during the turning of red brass (C23000) using ANN and regression analysis,” Eng. Sci. Technol. an Int. J., vol. 20, no. 3, pp. 1220-1226, Jun. 2017. https://doi.org/10.1016/j.jestch.2016.10.019
dc.relation/*ref*/F. Arnold; A. Hänel; A. Nestler; A. Brosius, “New approaches for the determination of specific values for process models in machining using artificial neural networks,” Procedia Manufacturing, vol. 11, pp. 1463-1470, 2017. https://doi.org/10.1016/j.promfg.2017.07.277
dc.relation/*ref*/A. Zerti; M. A. Yallese; O. Zerti; M. Nouioua; R. Khettabi, “Prediction of machining performance using RSM and ANN models in hard turning of martensitic stainless steel AISI 420,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci, vol. 233, no. 13, pp. 4439-4462, Jan. 2019. https://doi.org/10.1177/0954406218820557
dc.relation/*ref*/B. Peng; T. Bergs; D. Schraknepper; F. Klocke; B. Döbbeler, “A hybrid approach using machine learning to predict the cutting forces under consideration of the tool wear,” Procedia CIRP, vol. 82, pp. 302-307, 2019. https://doi.org/10.1016/j.procir.2019.04.031
dc.relation/*ref*/E. Wenkler; F. Arnold; A. Hänel; A. Nestler; A. Brosius, “Intelligent characteristic value determination for cutting processes based on machine learning,” Procedia CIRP, vol. 79, pp. 9-14, 2019. https://doi.org/10.1016/j.procir.2019.02.003
dc.relation/*ref*/M. Hashemitaheri; S. M. Reddy Mekarthy; H. Cherukuri, “Prediction of specific cutting forces and maximum tool temperatures in orthogonal machining by Support Vector and Gaussian Process Regression Methods," Procedia Manufacturing, vol. 48, pp. 1000-1008, 2020. https://doi.org/10.1016/j.promfg.2020.05.139
dc.relation/*ref*/D. Curra-Sosa; R. Pérez-Rodríguez; R. Del-Risco-Alfonso, “Predictive Model for Specific Energy Consumption in the Turning of AISI 316L Steel," in Progress in Artificial Intelligence and Pattern Recognition. vol. 11047, Hernández Y., Milián V., J. Ruiz, Eds., ed Cham: Springer, 2018, pp. 51-58, https://doi.org/10.1007/978-3-030-01132-1_6
dc.relation/*ref*/L. W. Hernández Gonzalez; Y. Seid Ahmed; R. Pérez Rodriguez; P. C. Zambrano Robledo; M. P. Guerrero Mata, “Selection of machining parameters using a correlative study of cutting tool wear in high-speed turning of AISI 1045 steel," J. Manuf. Mater. Process., vol. 2, no.4, pp. 1-14, Oct. 2018. https://doi.org/10.3390/jmmp2040066
dc.relation/*ref*/L. W. Hernández Gonzalez; R. Pérez Rodriguez; P. C. Zambrano Robledo; M. P. Guerrero Mata; L. Dumitrescu, “Análisis experimental del torneado de alta velocidad del acero AISI 1045,” Ingeniería Mecánica, vol. 15 pp. 10-22, Abr. 2012. http://www.ingenieriamecanica.cujae.edu.cu/index.php/revistaim/article/view/397/738
dc.relation/*ref*/M. Paluszek; S. Thomas, MATLAB Machine Learning, 1st ed. New Jersey, USA: Apress, 2017.
dc.rightsCopyright (c) 2021 TecnoLógicasen-US
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0en-US
dc.sourceTecnoLógicas; Vol. 24 No. 51 (2021); e1671en-US
dc.sourceTecnoLógicas; Vol. 24 Núm. 51 (2021); e1671es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectCutting forcesen-US
dc.subjectSpecific energy consumptionen-US
dc.subjectHigh-speed turningen-US
dc.subjectArtificial neural networksen-US
dc.subjectFuerzas de cortees-ES
dc.subjectConsumo específico de energíaes-ES
dc.subjectTorneado de alta velocidades-ES
dc.subjectRedes Neuronales Artificialeses-ES
dc.titleModeling Cutting Forces in High-Speed Turning using Artificial Neural Networksen-US
dc.titleModelado de las fuerzas de corte en el torneado de alta velocidad utilizando redes neuronales artificialeses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem