Mostrar el registro sencillo del ítem

Revalorización de residuos de equipos eléctricos y electrónicos en Colombia: una alternativa para la obtención de metales preciosos y metales para la industria

dc.creatorAristizábal-Alzate, Carlos E.
dc.creatorGonzález-Manosalva, José L.
dc.creatorVargas, Andrés F.
dc.date2021-04-26
dc.date.accessioned2021-08-19T16:21:45Z
dc.date.available2021-08-19T16:21:45Z
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1740
dc.identifier10.22430/22565337.1740
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/12069
dc.descriptionThis article aims to review the global context, and especially the Colombian context, regarding the management of waste electrical and electronic appliances, their use, recovery and the main extraction methods for high added-value base and precious metals. A literature review was carried out to obtain the quantities of residues, their main components and the extraction methods for base and precious metals; for Colombia, a case study was carried out in which, through a hydrometallurgy process applied to cellular phones, the quantities of base and precious metals that can be obtained were calculated. Only 15.5 % of e-waste in the world is recycled, the main recyclable components are iron (Fe), copper (Cu), aluminum (Al), lead (Pb), nickel (Ni), silver (Ag), gold (Au) and palladium (Pd), and that using e-waste as a source of metals could reduce energy consumption by 60-95 %. For the case study in Colombia, it was found that 3.8 t/year of Cu, 3.5 t/year of Fe, 56.5 kg/year of Ag, 6 kg/year of Pd and 10 kg/year of Au could be obtained. The conclusion is that recovering metals from electrical and electronic waste is feasible and that alternatives should be sought to take advantage of them due to their potential added value.en-US
dc.descriptionEl objetivo de este artículo es revisar el contexto mundial, y especialmente el colombiano, respecto al manejo de los residuos de equipos eléctricos y electrónicos, su aprovechamiento, recuperación y los principales métodos para la extracción de metales base y preciosos de alto valor agregado. Para ello, se realizó una revisión bibliográfica para obtener las cantidades de residuos, sus componentes principales y los métodos de extracción de metales base y preciosos; para Colombia, se realizó un estudio de caso, en el que, mediante un proceso de hidrometalurgia aplicado a teléfonos celulares, se calcularon las cantidades de metales base y preciosos que se pueden obtener. Se encontró que solo se aprovecha el 15,5 % de los residuos electrónicos en el mundo, que los principales componentes reciclables son el hierro (Fe), el cobre (Cu), el aluminio (Al), el plomo (Pb), el níquel (Ni), la plata (Ag), el oro (Au) y el paladio (Pd), y que el uso de los residuos electrónicos como fuente de metales podría reducir el consumo de energía entre 60 % y 95 %. Para el estudio de caso en Colombia, se encontró que se podrían obtener 3,8 t/año de Cu, 3,5 t/año de Fe, 56,5 kg/año de Ag, 6 kg/año de Pd y 10 kg/año de Au. Se concluye que es viable la recuperación de metales a partir de residuos eléctricos y electrónicos y que se deben buscar alternativas para aprovecharlos debido a su potencial valor agregado.es-ES
dc.formatapplication/pdf
dc.formatapplication/zip
dc.formattext/xml
dc.formattext/html
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1740/1973
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1740/2062
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1740/1976
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1740/1977
dc.relation/*ref*/M. Ghodrat; M. A. Rhamdhani; G. Brooks; M. Rashidi; B. Samali, “A thermodynamic-based life cycle assessment of precious metal recycling out of waste printed circuit board through secondary copper smelting,” Environ. Dev., vol. 24, pp. 36–49, Dec. 2017. https://doi.org/10.1016/j.envdev.2017.07.001
dc.relation/*ref*/A. Priya; S. Hait, “Toxicity characterization of metals from various waste printed circuit boards,” Process Saf. Environ. Prot., vol. 116, pp. 74–81, May. 2018. https://doi.org/10.1016/j.psep.2018.01.018
dc.relation/*ref*/A. Işildar; E. R. Rene; E. D. van Hullebusch; P. N. L. Lens, “Electronic waste as a secondary source of critical metals: Management and recovery technologies,” Resour. Conserv. Recycl., vol 135. pp. 296-312, Agu. 2018. https://doi.org/10.1016/j.resconrec.2017.07.031
dc.relation/*ref*/M. Kaya, Current WEEE recycling solutions. Elsevier Ltd, 2018.
dc.relation/*ref*/A. Tuncuk; V. Stazi; A. Akcil; E. Y. Yazici; H. Deveci, “Aqueous metal recovery techniques from e-scrap : Hydrometallurgy in recycling,” Miner. Eng., vol. 25, no. 1, pp. 28–37, Jan. 2012. https://doi.org/10.1016/j.mineng.2011.09.019
dc.relation/*ref*/L. A. Diaz; T. E. Lister, “Economic evaluation of an electrochemical process for the recovery of metals from electronic waste,” Waste Manag., vol. 74, pp. 384–392, Apr. 2018. https://doi.org/10.1016/j.wasman.2017.11.050
dc.relation/*ref*/I. M. S. K. Ilankoon; Y. Ghorbani; M. N. Chong; G. Herath; T. Moyo; J. Petersen, “E-waste in the international context – A review of trade flows, regulations, hazards, waste management strategies and technologies for value recovery,” Waste Manag., vol. 82, pp. 258–275, Dec. 2018. https://doi.org/10.1016/j.wasman.2018.10.018
dc.relation/*ref*/J. Li; Z. Ge; C. Liang; N. An, “Present status of recycling waste mobile phones in China: a review,” Environ. Sci. Pollut. Res., vol. 24, no. 20, pp. 16578–16591, May. 2017. https://doi.org/10.1007/s11356-017-9089-z
dc.relation/*ref*/N. Gurita; M. Fröhling; J. Bongaerts, “Assessing potentials for mobile/smartphone reuse/remanufacture and recycling in Germany for a closed loop of secondary precious and critical metals,” J. Remanufacturing, vol. 8, pp. 1–22, 2018. https://doi.org/10.1007/S13243-018-0042-1
dc.relation/*ref*/M. Goosey; R. Kellner, “Recycling technologies for the treatment of end of life printed circuit boards (PCBs),” Circuit World, vol. 29, no. 3, pp. 33–37, Sep. 2003. https://doi.org/10.1108/03056120310460801
dc.relation/*ref*/J. Li; B. N. Lopez; L. Liu; N. Zhao; K. Yu; L. Zheng, “Regional or global WEEE recycling. Where to go?,” Waste Manag., vol. 33, no. 4, pp. 923–934, 2013. https://doi.org/10.1016/j.wasman.2012.11.011
dc.relation/*ref*/A. Akcil; C. Erust; C. Sekhar Gahan; M. Ozgun; M. Sahin; A. Tuncuk, “Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants – A review,” Waste Manag., vol. 45, pp. 258–271, Nov. 2015. https://doi.org/10.1016/j.wasman.2015.01.017
dc.relation/*ref*/P. Stuhlpfarrer; S. Luidold; H. Antrekowitsch, “Recycling of waste printed circuit boards with simultaneous enrichment of special metals by using alkaline melts : A green and strategically advantageous solution,” J. Hazard. Mater., vol. 307, pp. 17–25, Apr. 2016. https://doi.org/10.1016/j.jhazmat.2015.12.007
dc.relation/*ref*/R. Cayumil; R. Khanna; R. Rajarao; P. S. Mukherjee; V. Sahajwalla, “Concentration of precious metals during their recovery from electronic waste,” Waste Manag., vol. 57, pp. 121-130, Nov. 2016. https://doi.org/10.1016/j.wasman.2015.12.004
dc.relation/*ref*/D. Ruiz; S. Bautista, “Factores influyentes en la generación de residuos de teléfonos móviles. Caso Colombia” Gestión y Ambient., vol. 19, no. 2, pp. 228–239, Ago. 2016. http://dx.doi.org/10.15446/ga.v19n2.54355
dc.relation/*ref*/F. Fizaine, “The economics of recycling rate: New insights from waste electrical and electronic equipment,” Resour. Policy, vol. 67, pp. 101675, Aug. 2020. https://doi.org/10.1016/j.resourpol.2020.101675
dc.relation/*ref*/Y. Lu; Z. Xu, “Precious metals recovery from waste printed circuit boards : A review for current status and perspective,” Resources, Conserv. Recycl., vol. 113, pp. 28–39, Oct. 2016. https://doi.org/10.1016/j.resconrec.2016.05.007
dc.relation/*ref*/C. Hagelüken; C. W. Corti, “Recycling of gold from electronics: Cost-effective use through ‘design for recycling’,” Gold Bull., vol. 43, no. 3, pp. 209–220, Sep. 2010. https://doi.org/10.1007/BF03214988
dc.relation/*ref*/Y. Lu; Q. Song; Z. Xu, “Integrated technology for recovering Au from waste memory module by chlorination process: Selective leaching, extraction, and distillation,” J. Clean. Prod., vol. 161, pp. 30–39, Sep. 2017. https://doi.org/10.1016/j.jclepro.2017.05.033
dc.relation/*ref*/A. K. Awasthi; J. Li, “An overview of the potential of eco-friendly hybrid strategy for metal recycling from WEEE,” Resour. Conserv. Recycl., vol. 126, no. November 2017 pp. 228–239, Nov. 2017. https://doi.org/10.1016/j.resconrec.2017.07.014
dc.relation/*ref*/H. Oliveros Gómez, “Metodología para recuperar metales preciosos: oro, plata y grupo del platino, presentes en desechos electrónicos,”(Tesis de Maestría), Universidad Nacional de Colombia, Medellín, 2011. https://repositorio.unal.edu.co/bitstream/handle/unal/8704/98487077.2011.pdf?sequence=1&isAllowed=y
dc.relation/*ref*/A. Gurgul; W. Szczepaniak; M. Zabłocka-Malicka, “Incineration and pyrolysis vs. steam gasification of electronic waste,” Sci. Total Environ., vol. 624, pp. 1119–1124, May. 2018. https://doi.org/10.1016/j.scitotenv.2017.12.151
dc.relation/*ref*/M. Ghodrat; M. A. Rhamdhani; G. Brooks; S. Masood; G. Corder, “Techno economic analysis of electronic waste processing through black copper smelting route,” J. Clean. Prod., vol. 126, pp. 178–190, Jul. 2016, https://doi.org/10.1016/j.jclepro.2016.03.033
dc.relation/*ref*/G. Chauhan; P. R. Jadhao; K. K. Pant; K. D. P. Nigam, “Novel technologies and conventional processes for recovery of metals from waste electrical and electronic equipment: Challenges & opportunities – A review,” J. Environ. Chem. Eng., vol. 6, no. 1, pp. 1288–1304. Feb. 2018. https://doi.org/10.1016/j.jece.2018.01.032
dc.relation/*ref*/Ministerio de ambiente y desarrollo sostenible, Decreto 284. Por el cual se adiciona el Decreto 1076 de 2015, Único Reglamentario del Sector Ambiente y Desarrollo Sostenible, en lo relacionado con la Gestión Integral de los Residuos de Aparatos Eléctricos y Electrónicos - RAEE Y se dictan otras disposiciones, 2015, pp. 1–10. https://www.minambiente.gov.co/images/normativa/app/decretos/df-DECRETO%200284%20DE%202018%20-%20GESTION%20INTEGRAL%20RESIDUOS%20RAEE.pdf
dc.relation/*ref*/M. Oguchi; H. Sakanakura; A. Terazono, “Toxic metals in WEEE: characterization and substance flow analysis in waste treatment processes.,” Sci. Total Environ., vol. 463–464, pp. 1124–1132, Oct. 2013. https://doi.org/10.1016/j.scitotenv.2012.07.078
dc.relation/*ref*/M. Bigum; L. Brogaard; T. H. Christensen, “Metal recovery from high-grade WEEE: A life cycle assessment,” J. Hazard. Mater., vol. 207–208, pp. 8–14, Mar. 2012. https://doi.org/10.1016/j.jhazmat.2011.10.001
dc.relation/*ref*/J. Romero Montenegro, “Colombia vs. la basura electrónica, un partido que va empatado,” (Trabajo de grado), Universidad del Rosario, 2014. https://repository.urosario.edu.co/bitstream/handle/10336/8902/53166329-2014.pdf?sequence=1
dc.relation/*ref*/L. Zhang; Z. Xu, “A Review of Current Progress of Recycling Technologies for Metals from Waste Electrical and Electronic Equipment,” J. Clean. Prod., vol. 127, pp. 19-36, Jul. 2016. https://doi.org/10.1016/j.jclepro.2016.04.004
dc.relation/*ref*/H. A. Arroyo; M. C. Fernández, “Tóxicos ambientales y su efecto sobre el neurodesarrollo,” Med. (Buenos Aires), vol. 73, no. suppl 1, pp. 93–102, 2013. https://www.medicinabuenosaires.com/PMID/24072057.pdf
dc.relation/*ref*/Z. Sun et al., “Toward Sustainability for Recovery of Critical Metals from Electronic Waste: The Hydrochemistry Processes,” ACS Sustain. Chem. Eng., vol. 5, no. 1, pp. 21–40, Sep. 2016. https://doi.org/10.1021/acssuschemeng.6b00841
dc.relation/*ref*/M. Desmarais; F. Pirade; J. Zhang; E. R. Rene, “Biohydrometallurgical processes for the recovery of precious and base metals from waste electrical and electronic equipments: Current trends and perspectives,” Bioresour. Technol. Reports, vol. 11, p. 100526, Sep. 2020. https://doi.org/10.1016/j.biteb.2020.100526
dc.relation/*ref*/The World Bank Group, “Commodity markets Outlook,’’ International Bank for Reconstruction and Development / World Bank. Washington DC, USA. A World Bank Report 2018 – Oct, Oct 2018. https://www.worldbank.org/en/research/commodity-markets
dc.relation/*ref*/H. S. Park; Y. J. Kim, “A novel process of extracting precious metals from waste printed circuit boards: Utilization of gold concentrate as a fluxing material,” J. Hazard. Mater., vol. 365, Mar. 2019, pp. 659–664, 2018. https://doi.org/10.1016/j.jhazmat.2018.11.051
dc.relation/*ref*/A. Marra; A. Cesaro; V. Belgiorno, “Separation efficiency of valuable and critical metals in WEEE mechanical treatments,” J. Clean. Prod., vol. 186, pp. 490–498, Jun. 2018. https://doi.org/10.1016/j.jclepro.2018.03.112
dc.relation/*ref*/L. Cardona; P. A. Ortiz; A. Restrepo, “Reciclaje Tecnológico al Servicio de la Ciencia,” TecnoLógicas, p. 31, Jun. 2010. https://doi.org/10.22430/22565337.317
dc.relation/*ref*/V. Sahajwalla; V. Gaikwad, “The present and future of e-waste plastics recycling,” Curr. Opin. Green Sustain. Chem., vol. 13, pp. 102–107, Oct. 2018. https://doi.org/10.1016/j.cogsc.2018.06.006
dc.relation/*ref*/J. Hao; Y. Wang; Y. Wu; F. Guo, “Metal recovery from waste printed circuit boards: A review for current status and perspectives,” Resour. Conserv. Recycl., vol. 157, pp. 104787, Jun. 2020. https://doi.org/10.1016/j.resconrec.2020.104787
dc.relation/*ref*/I. Román, “E-Waste en Colombia: El aporte de los operadores móviles en la reducción de la basura electrónica - Estudio de caso,” GSMA. Feb. 2015. https://www.gsma.com/latinamerica/wp-content/uploads/2015/02/ewaste-colombia.pdf
dc.relation/*ref*/Ministerio de Ambiente y Desarrollo Sostenible, Política nacional para la gestión integral de los residuos de aparatos eléctricos y electrónicos (RAEE). 2017. https://www.minambiente.gov.co/images/AsuntosambientalesySectorialyUrbana/pdf/e-book_rae_/Politica_RAEE.pdf
dc.relation/*ref*/J. Burlakovs et al., “On the way to ‘zero waste’ management: Recovery potential of elements, including rare earth elements, from fine fraction of waste,” J. Clean. Prod., vol. 186, pp. 81–90, Jun. 2018. https://doi.org/10.1016/j.jclepro.2018.03.102
dc.relation/*ref*/A. Serpe, “Green chemistry for precious metals recovery from WEEE’’ in Waste Electrical and Electronic Equipment Recycling: Aqueous Recovery Methods, 1th ed., St. Louis, Missouri: Elsevier B.V., 2018, pp. 271–332. https://doi.org/10.1016/B978-0-08-102057-9.00011-1
dc.relation/*ref*/B. Rodríguez; L. A González; N. Reyes; L. S. Reyes; A. F. Torres, “Sistema de gestión de residuos de aparatos eléctricos y electrónicos. Enfoque de dinámica de sistemas,” Sist. Telemática, vol. 11, no. 24, pp. 39–53, 2013. https://www.redalyc.org/articulo.oa?id=411534392003
dc.relation/*ref*/ITU, Cuestión 8/2: Estrategias y políticas para la eliminación o reutilización adecuadas de residuos generados por las telecomunicaciones / TIC. 2017. https://www.itu.int/es/publications/ITU-D/pages/publications.aspx?parent=D-STG-SG02.08.1-2017&media=paper
dc.relation/*ref*/J. Baptiste Bahers; J. Kim, “Regional approach of waste electrical and electronic equipment (WEEE) management in France,” Resour. Conserv. Recycl., vol. 129, pp. 45–55, Feb. 2018. https://doi.org/10.1016/j.resconrec.2017.10.016
dc.relation/*ref*/A. K. Awasthi; J. Li, “An overview of the potential of eco-friendly hybrid strategy for metal recycling from WEEE,” vol. 126, pp. 228-239, Nov. 2017. https://doi.org/10.1016/j.resconrec.2017.07.014
dc.relation/*ref*/H. Y. Kang; J. M. Schoenung, “Economic analysis of electronic waste recycling: Modeling the cost and revenue of a materials recovery facility in California,” Environ. Sci. Technol., vol. 40, no. 5, pp. 1672–1680, Jan. 2006. https://doi.org/10.1021/es0503783
dc.relation/*ref*/C. A. Kohl; L. P. Gomes, “Physical and chemical characterization and recycling potential of desktop computer waste, without screen,” J. Clean. Prod., vol. 184, pp. 1041–1051, May. 2018. https://doi.org/10.1016/j.jclepro.2018.02.221
dc.relation/*ref*/M. K. Jaunich; J. DeCarolis; R. Handfield; E. Kemahlioglu-Ziya; S. R. Ranjithan; H. Moheb-Alizadeh, “Life-cycle modeling framework for electronic waste recovery and recycling processes,” Resour. Conserv. Recycl., vol. 161, pp. 104841, Oct. 2020. https://doi.org/10.1016/j.resconrec.2020.104841
dc.relation/*ref*/S. Syed, “Recovery of gold from secondary sources-A review,” Hydrometallurgy, vol. 115–116, pp. 30–51, Mar. 2012. https://doi.org/10.1016/j.hydromet.2011.12.012
dc.relation/*ref*/Y. Ding et al., “Recovery of precious metals from electronic waste and spent catalysts: A review,” Resour. Conserv. Recycl., vol. 141, no. August 2018, pp. 284–298, 2019. https://doi.org/10.1016/j.resconrec.2018.10.041
dc.relation/*ref*/M. Sethurajan et al., ‘’Recent advances on hydrometallurgical recovery of critical and precious elements from end of life electronic wastes - a review’’, Critical Reviews in Environmental Science and Technology, vol. 49, no. 3, pp 212-275, Jan. 2019. https://doi.org/10.1080/10643389.2018.1540760
dc.relation/*ref*/M. Wang; Q. Tan; J. F. Chiang; J. Li, “Recovery of rare and precious metals from urban mines—A review,” Front. Environ. Sci. Eng., vol. 11, no. 5, pp. 1–17, Jul. 2017. https://doi.org/10.1007/s11783-017-0963-1
dc.relation/*ref*/H. S. Park; Y. S. Han; J. H. Park, “Massive Recycling of Waste Mobile Phones: Pyrolysis, Physical Treatment, and Pyrometallurgical Processing of Insoluble Residue,” ACS Sustain. Chem. Eng., vol. 7, no. 16, pp. 14119- 14125, Jul. 2019. https://doi.org/10.1021/acssuschemeng.9b02725
dc.relation/*ref*/N. M. Tue; S. Takahashi; A. Subramanian; S. Sakai; S. Tanabe, “Environmental contamination and human exposure to dioxin-related compounds in e-waste recycling sites of developing countries.,” Environ. Sci. Process. Impacts, vol. 15, no. 7, pp. 1326–1331, Jun. 2013. https://doi.org/10.1039/c3em00086a
dc.relation/*ref*/L. Rocchetti; F. VegliòB; Kopacek; F. Beolchini, “Environmental impact assessment of hydrometallurgical processes for metal recovery from WEEE residues using a portable prototype plant,” Environ. Sci. Technol., vol. 47, no. 3, pp. 1581–1588, Jan. 2013. https://doi.org/10.1021/es302192t
dc.relation/*ref*/A. Alzate; M. E. López; C. Serna, “Recovery of gold from waste electrical and electronic equipment (WEEE) using ammonium persulfate,” Waste Manag., vol. 57. pp. 113-120, Nov. 2016. https://doi.org/10.1016/j.wasman.2016.01.043
dc.relation/*ref*/B. Debnath; R. Chowdhury; S. K. Ghosh, “Sustainability of metal recovery from E-waste,” Front. Environ. Sci. Eng., vol. 12, no. 2, pp. 1–12, Mar. 2018. https://doi.org/10.1007/s11783-018-1044-9
dc.relation/*ref*/P. Evangelopoulos; E. Kantarelis; W. Yang, ‘’Waste Electric and Electronic Equipment: Current Legislations, Waste Management, and Recycling of Energy, Materials, and Feedstocks’’ in Sustainable Resource Recovery and Zero Waste Approaches, 1th ed., St. Louis, Missouri: Elsevier B.V., 2019, pp. 239-266. https://doi.org/10.1016/B978-0-444-64200-4.00017-7
dc.relation/*ref*/V. H. Ha; J. C. Lee; T. H. Huynh; J. Jeong; B. D. Pandey, “Optimizing the thiosulfate leaching of gold from printed circuit boards of discarded mobile phone,” Hydrometallurgy, vol. 149, pp. 118–126, Oct. 2014. https://doi.org/10.1016/j.hydromet.2014.07.007
dc.relation/*ref*/Z. Sun; Y. Xiao; H. Agterhui; J. Sietsma; Y. Yang, “Recycling of metals from urban mines - A strategic evaluation,” J. Clean. Prod., vol. 112, pp. 2977–2987, Jan. 2016. https://doi.org/10.1016/j.jclepro.2015.10.116
dc.relation/*ref*/P. Quinet; J. Proost, A. Van. Lierde, “Recovery of precious metals from electronic scrap by hydrometallurgical processing routes,” Mining, Metallurgy & Exploration, vol. 22, no. 1, pp. 17–22, Feb. 2005. https://doi.org/10.1007/BF03403191
dc.relation/*ref*/Y. Zhang; S. Liu; H. Xie; X. Zeng; J. Li, “Current Status on Leaching Precious Metals from Waste Printed Circuit Boards,” Procedia Environ. Sci., vol. 16, pp. 560–568, 2012. https://doi.org/10.1016/j.proenv.2012.10.077
dc.rightsCopyright (c) 2021 TecnoLógicasen-US
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0en-US
dc.sourceTecnoLógicas; Vol. 24 No. 51 (2021); e1740en-US
dc.sourceTecnoLógicas; Vol. 24 Núm. 51 (2021); e1740es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectChemical processen-US
dc.subjecthydrometallurgyen-US
dc.subjectwaste recoveryen-US
dc.subjectsustainable developmenten-US
dc.subjectProceso químicoes-ES
dc.subjecthidrometalurgiaes-ES
dc.subjectrecuperación de residuoses-ES
dc.subjectdesarrollo sosteniblees-ES
dc.titleWaste Electrical and Electronic Appliances Valorization in Colombia: An Alternative for Obtaining Precious Metals and Metals Used in Industryen-US
dc.titleRevalorización de residuos de equipos eléctricos y electrónicos en Colombia: una alternativa para la obtención de metales preciosos y metales para la industriaes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeReview Articleen-US
dc.typeArtículos de revisiónes-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem