Mostrar el registro sencillo del ítem
Microencapsulation of Bioactive Compounds in Diverse Matrices by Spray Drying: A Literature Review
Microencapsulación por secado por aspersión de compuestos bioactivos en diversas matrices: una revisión
dc.creator | Rios-Aguirre, Sara | |
dc.creator | Gil-Garzón, Maritza Andrea | |
dc.date | 2021-05-28 | |
dc.date.accessioned | 2021-08-19T16:21:47Z | |
dc.date.available | 2021-08-19T16:21:47Z | |
dc.identifier | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1836 | |
dc.identifier | 10.22430/22565337.1836 | |
dc.identifier.uri | http://test.repositoriodigital.com:8080/handle/123456789/12076 | |
dc.description | Microencapsulation by spray drying is widely used to protect bioactive compounds, especially polyphenols in different matrices. It is also one of the simplest and most economical drying techniques, which has favored its technological transfer to industrial scale. Therefore, this article analyzes, based on previous studies, the operating parameters used in the implementation of methods for the microencapsulation of bioactive compounds present in various matrices, in order to identify effective conditions for future applications. This literature review covered the period between 2010 and 2021 in indexed databases, focusing on multiple parameters: operating conditions, encapsulating materials, microcapsule morphology, and microencapsulation efficiency. The results enabled us to identify the most critical parameters. Among them, air inlet and outlet temperatures stand out, as well as encapsulating materials; they directly influence the protection of polyphenols, which are mostly thermolabile. The studies reviewed here show that greater efficiency and useful life (with respect to functional properties) can be obtained by optimizing the aforementioned operating conditions. Furthermore, the results reported in this paper can be used to obtain microcapsules of matrices that can be used as a raw material, high-quality final product, or for controlled release in vitro studies in the food, pharmaceutical, or cosmetic industries. | en-US |
dc.description | La microencapsulación mediante secado por aspersión es una técnica ampliamente empleada en la protección de compuestos bioactivos, en especial sobre los polifenoles en diferentes matrices; además, es una de las técnicas más sencillas y económicas de secado, lo cual ha favorecido su transferencia tecnológica a escala industrial. Por esta razón, este artículo tiene como propósito analizar, a partir de estudios previamente reportados, los parámetros de operación empleados en la implementación de los métodos para la microencapsulación de compuestos bioactivos presentes en diversas matrices, con el fin de identificar las condiciones efectivas para futuras aplicaciones. La revisión de los estudios publicados se realizó en un período comprendido entre 2010 y 2021 en bases de datos indexadas, donde los parámetros evaluados se centraron en: las condiciones de operación, materiales encapsulantes, morfología de las microcápsulas y la eficiencia de la microencapsulación. Los resultados permitieron identificar los parámetros más críticos, entre los que sobresalen la temperatura de entrada y salida del aire, así como los materiales encapsulantes, los cuales influyen directamente en la protección de los polifenoles, que son en su mayoría termolábiles, de esta manera, se pudo constatar en los estudios revisados el alcance de una mayor eficiencia y vida útil con respecto a las propiedades funcionales, al optimizar las condiciones de operación mencionada, y se constata que los resultados reportados conllevan a la obtención de microcápsulas de matrices que pueden ser empleadas como materia prima y producto final de mayor calidad, o para estudios in vitro de liberación controlada para la industria alimentaria, farmacéutica o cosmética. | es-ES |
dc.format | application/pdf | |
dc.format | application/zip | |
dc.format | text/xml | |
dc.format | text/html | |
dc.language | spa | |
dc.publisher | Instituto Tecnológico Metropolitano (ITM) | en-US |
dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1836/1998 | |
dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1836/2063 | |
dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1836/1999 | |
dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1836/2000 | |
dc.relation | /*ref*/T. C. Buttow Rigolon; F. A. Ribeiro de Barros; É. N. Rufino Vieira; P. C. Stringheta, “Prediction of total phenolics, anthocyanins and antioxidant capacity of blackberry (Rubus sp.), blueberry (Vaccinium sp.) and jaboticaba (Plinia cauliflora (Mart.) Kausel) skin using colorimetric parameters,” Food Sci. Technol., vol. 40, no. suppl 2, pp. 620–625, May. 2020. https://doi.org/10.1590/fst.34219 | |
dc.relation | /*ref*/Y. Wei et al., “Exploring the biochemical properties of three polyphenol oxidases from blueberry (Vaccinium corymbosum L.),” Food Chem., vol. 344, May 2021. https://doi.org/10.1016/j.foodchem.2020.128678 | |
dc.relation | /*ref*/I. Cabezudo; M. R. Meini; C. C. Di Ponte; N. Melnichuk; C. E. Boschetti; D. Romanini, “Soybean (Glycine max) hull valorization through the extraction of polyphenols by green alternative methods,” Food Chem., vol. 338, Feb. 2021. https://doi.org/10.1016/j.foodchem.2020.128131 | |
dc.relation | /*ref*/E. Elejalde; M. C. Villarán; R. M. Alonso, “Grape polyphenols supplementation for exercise-induced oxidative stress,” Journal of the International Society of Sports Nutrition, vol. 18, no. 3. Jan. 2021. https://doi.org/10.1186/s12970-020-00395-0 | |
dc.relation | /*ref*/C. Guo et al., “Immunomodulation effects of polyphenols from thinned peach treated by different drying methods on RAW264.7 cells through the NF-κB and Nrf2 pathways,” Food Chem., vol. 340, Mar. 2021. https://doi.org/10.1016/j.foodchem.2020.127931 | |
dc.relation | /*ref*/H. Shabbir et al., “In vivo screening and antidiabetic potential of polyphenol extracts from guava pulp, seeds and leaves,” Animals, vol. 10, no. 9, pp. 1–14, Sep. 2020. https://doi.org/10.3390/ani10091714 | |
dc.relation | /*ref*/R. Nawaz; N. Safdar; A. Ainee; S. Jabbar, “Development and storage stability studies of functional fruit drink supplemented with polyphenols extracted from lemon peels,” J. Food Process. Preserv., vol. 45, no. 3, Jan. 2021. https://doi.org/10.1111/jfpp.15268 | |
dc.relation | /*ref*/E. S. Ordoñez-Gómez; D. Reátegui-Díaz; J. E. Villanueva-Tiburcio, “Total polyphenols and antioxidant capacity of peel and leaves in twelve citrus,” Sci. Agropecu., vol. 9, no. 1, pp. 123–131, Mar. 2018. https://www.cabdirect.org/globalhealth/restricted/?target=%2fglobalhealth%2fabstract%2f20193359614 | |
dc.relation | /*ref*/B. A. Rojano; I. C. Zapata Vahos; A. F. Alzate Arbeláez; A. J. Mosquera Martínez; F. Bernardo Cortés Correa; L. Gamboa Carvajal, “Polifenoles y Actividad Antioxidante del Fruto Liofilizado de Palma Naidi (Açai Colombiano) (Euterpe oleracea Mart)” Rev. Fac. Nac. Agron., vol. 64, no. 2, pp. 6213–6220, 2011. https://repositorio.unal.edu.co/handle/unal/40471 | |
dc.relation | /*ref*/S. Rodríguez Barona; L. M. Montes; D. D. J. Ramírez, “Microencapsulación De Probióticos Mediante Secado Por Aspersión En Presencia De Prebióticos,” Vitae, vol. 19, no. 1, pp. S186–S188, Jan. 2012. https://www.redalyc.org/pdf/1698/169823914053.pdf | |
dc.relation | /*ref*/K. Sarabandi; P. Gharehbeglou; S. M. Jafari, “Spray-drying encapsulation of protein hydrolysates and bioactive peptides: Opportunities and challenges,” Dry. Technol., vol. 38, no. 5–6, pp. 577–595, Nov. 2019. https://doi.org/10.1080/07373937.2019.1689399 | |
dc.relation | /*ref*/S. R. Bajaj; S. J. Marathe; R. S. Singhal, “Co-encapsulation of vitamins B12 and D3 using spray drying: Wall material optimization, product characterization, and release kinetics,” Food Chem., vol. 335, p. 127642, Jan. 2021. https://doi.org/10.1016/j.foodchem.2020.127642 | |
dc.relation | /*ref*/L. Chen; H. Cao; J. Xiao, “Polyphenols: Absorption, bioavailability, and metabolomics”, in Polyphenols: Properties, Recovery, and Applications, Elsevier, 2018, pp. 45–67. https://doi.org/10.1016/B978-0-12-813572-3.00002-6 | |
dc.relation | /*ref*/A. Belščak-Cvitanović; K. Durgo; A. Huđek; V. Bačun-Družina; D. Komes, “Overview of polyphenols and their properties,” in Polyphenols: Properties, Recovery, and Applications, Elsevier, 2018, pp. 3–44. https://doi.org/10.1016/B978-0-12-813572-3.00001-4 | |
dc.relation | /*ref*/M. Quiñones; M. Miguel; A. Aleixandre, “Los polifenoles, compuestos de origen natural con efectos saludables sobre el sistema cardiovascular,” Nutr. hosp, vol. 27, no. 1, pp. 76–89, 2012. https://doi.org/10.3305/nh.2012.27.1.5418 | |
dc.relation | /*ref*/D. A. Martín Gordo, “Los Compuestos Fenólicos, Un Acercamiento A Su Biosíntesis, Síntesis Y Actividad Biológica,” Rev. Investig. Agrar. y Ambient., vol. 9, no. 1, pp. 81–104, Feb. 2018. https://doi.org/10.22490/21456453.1968 | |
dc.relation | /*ref*/M. Avello; M. Suwalsky, “Radicales libres, antioxidantes naturales y mecanismos de protección,” Atenea (Concepción), no. 494, pp. 161–172, 2006. http://dx.doi.org/10.4067/S0718-04622006000200010 | |
dc.relation | /*ref*/S. Ray; U. Raychaudhuri; R. Chakraborty, “An overview of encapsulation of active compounds used in food products by drying technology,” Food Biosci., vol. 13, pp. 76–83, Mar. 2016. https://doi.org/10.1016/j.fbio.2015.12.009 | |
dc.relation | /*ref*/N. Kanha; J. M. Regenstein; S. Surawang; P. Pitchakarn; T. Laokuldilok, “Properties and kinetics of the in vitro release of anthocyanin-rich microcapsules produced through spray and freeze-drying complex coacervated double emulsions,” Food Chem., vol. 340, Mar. 2021. https://doi.org/10.1016/j.foodchem.2020.127950 | |
dc.relation | /*ref*/R. Tan et al., “Preparation of Green Coffee Oil Microcapsules by Complex Coacervation Method and Its Physicochemical Properties,” Shipin Kexue/Food Sci., vol. 41, no. 23, pp. 144–152, Dec. 2020. https://doi.org/10.7506/spkx1002-6630-20191128-273 | |
dc.relation | /*ref*/R. A. Parra Huertas, “Revisión: Microencapsulación de Alimentos,” Rev. Fac. Nac. Agron., vol. 63, no. 2, pp. 5669–5684, Jun.2010. https://www.redalyc.org/pdf/1799/179918602020.pdf | |
dc.relation | /*ref*/S. Risch et al., Encapsulation and controlled release of food ingredients. Washington, DC, EEUU: ACS Symposium Series; American Chemical Society, 1995, p. 214. https://doi.org/10.1021/bk-1995-0590.fw001 | |
dc.relation | /*ref*/M. R. Barroso et al., “Exploring the antioxidant potential of Helichrysum stoechas (L.) Moench phenolic compounds for cosmetic applications: Chemical characterization, microencapsulation and incorporation into a moisturizer”,” Ind. Crops Prod., vol. 53, pp. 330–336, Feb. 2014. https://doi.org/10.1016/j.indcrop.2014.01.004 | |
dc.relation | /*ref*/D. Krajišnik; B. Čalija; N. Cekić, “Polymeric Microparticles and Inorganic Micro/Nanoparticulate Drug Carriers: An Overview and Pharmaceutical Application,” in Microsized and Nanosized Carriers for Nonsteroidal Anti-Inflammatory Drugs, Elsevier, 2017, pp. 31–67. https://doi.org/10.1016/B978-0-12-804017-1.00002-9 | |
dc.relation | /*ref*/R. Badulescu; V. Vivod; D. Jausovec; B. Voncina, “Treatment of Cotton Fabrics with Ethyl Cellulose Microcapsules,” in Medical and Healthcare Textiles, Woodhead publishing, 2010, pp. 226–235. https://doi.org/10.1533/9780857090348.226 | |
dc.relation | /*ref*/S. Gouin, “Microencapsulation: Industrial appraisal of existing technologies and trends,” Trends in Food Science and Technology, vol. 15, no. 7–8, pp. 330–347. Aug. 2004. https://doi.org/10.1016/j.tifs.2003.10.005 | |
dc.relation | /*ref*/F. Shahidi; X. Qing Han, “Encapsulation of Food Ingredients,” Crit. Rev. Food Sci. Nutr., vol. 33, no. 6, pp. 501–547, Jan. 1993. https://doi.org/10.1080/10408399309527645 | |
dc.relation | /*ref*/M. L. Bruschi, “Drug delivery systems,” in Strategies to Modify the Drug Release from Pharmaceutical Systems, Woodhead Publishing, 2015, pp. 87–194. https://doi.org/10.1016/B978-0-08-100092-2.00006-0 | |
dc.relation | /*ref*/M. Jelvehgari; S. Hassan Montazam, “Comparison of Microencapsulation by Emulsion-Solvent Extraction/ Evaporation Technique Using Derivatives Cellulose and Acrylate-Methacrylate Copolymer as Carriers,” Jundishapur J. Nat. Pharm. Prod., vol. 7, no. 4, pp. 144–152, Oct. 2012. https://doi.org/10.5812/jjnpp.3986 | |
dc.relation | /*ref*/A. Ye; S. G. Anema; H. Singh, “Behaviour of homogenized fat globules during the spray drying of whole milk,” Int. Dairy J., vol. 17, no. 4, pp. 374–382, Apr. 2007. https://doi.org/10.1016/j.idairyj.2006.04.007 | |
dc.relation | /*ref*/K.-Y. Show; Y.-G. Yan; D.-J. Lee, “Chapter 7 - Algal biomass harvesting and drying,” in Biofuels from Algae, Elsevier, 2019, pp. 135–166. https://doi.org/10.1016/B978-0-444-64192-2.00007-X | |
dc.relation | /*ref*/T. Moreno et al., “Spray Drying Formulation of Polyphenols-Rich Grape Marc Extract: Evaluation of Operating Conditions and Different Natural Carriers,” Food Bioprocess Technol., vol. 9, no. 12, pp. 2046–2058, Dec. 2016. https://doi.org/10.1007/s11947-016-1792-0 | |
dc.relation | /*ref*/E. C. Frascareli; V. M. Silva; R. V. Tonon; M. D. Hubinger, “Effect of process conditions on the microencapsulation of coffee oil by spray drying,” Food Bioprod. Process., vol. 90, no. 3, pp. 413–424, Jul. 2012. https://doi.org/10.1016/j.fbp.2011.12.002 | |
dc.relation | /*ref*/G. A. Reineccius, “The Spray Drying of Food Flavors,” Dry. Technol., vol. 22, no. 6, pp. 1289–1324, Jun. 2004. https://doi.org/10.1081/DRT-120038731 | |
dc.relation | /*ref*/J. Shaikh; R. Bhosale; R. Singhal, “Microencapsulation of black pepper oleoresin,” Food Chem., vol. 94, no. 1, pp. 105–110, Jan. 2006. https://doi.org/10.1016/j.foodchem.2004.10.056 | |
dc.relation | /*ref*/O. D . López Hernandez; J. K. Lozada López, “Microencapsulación del probiótico Saccharomyces cerevisiae var. boulardii mediante secado por aspersión con polímeros Eudragit®,” 2021. https://repositorio.uta.edu.ec/handle/123456789/32109 | |
dc.relation | /*ref*/D. B. Rodriguez-Amaya, “Natural food pigments and colorants,” Current Opinion in Food Science, vol. 7. pp. 20–26, Feb. 2016 https://doi.org/10.1016/j.cofs.2015.08.004 | |
dc.relation | /*ref*/V. B. de Souza; M. Thomazini; J. C. D. Carvalho Balieiro; C. S. Fávaro-Trindade, “Effect of spray drying on the physicochemical properties and color stability of the powdered pigment obtained from vinification byproducts of the Bordo grape (Vitis labrusca),” Food Bioprod. Process., vol. 93, pp. 39–50, Jan. 2015. https://doi.org/10.1016/j.fbp.2013.11.001 | |
dc.relation | /*ref*/T. Moreno; M. J. Cocero; S. Rodríguez-Rojo, “Storage stability and simulated gastrointestinal release of spray dried grape marc phenolics,” Food Bioprod. Process., vol. 112, pp. 96–107, Nov. 2018. https://doi.org/10.1016/j.fbp.2018.08.011 | |
dc.relation | /*ref*/I. Khalifa; M. Li; T. Mamet; C. Li, “Maltodextrin or gum Arabic with whey proteins as wall-material blends increased the stability and physiochemical characteristics of mulberry microparticles,” Food Biosci., vol. 31, Oct. 2019. https://doi.org/10.1016/j.fbio.2019.100445 | |
dc.relation | /*ref*/J. A. Cardona Arias; L. F. Higuita Gutiérrez; L. A. Ríos Osorio, Revisiones sistemáticas de la literatura científica: La investigación teórica como principio para el desarrollo de la ciencia básica y aplicada. Universidad Cooperativa de Colombia, 2016. http://dx.doi.org/10.16925/9789587600377 | |
dc.relation | /*ref*/M. Cano-Chauca; P. C. Stringheta; A. M. Ramos; J. Cal-Vidal, “Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization,” Innov. Food Sci. Emerg. Technol., vol. 6, no. 4, pp. 420–428, Dec. 2005. https://doi.org/10.1016/j.ifset.2005.05.003 | |
dc.relation | /*ref*/M. C. Otálora; J. G. Carriazo; L. Iturriaga; M. A. Nazareno; C. Osorio, “Microencapsulation of betalains obtained from cactus fruit (Opuntia ficus-indica) by spray drying using cactus cladode mucilage and maltodextrin as encapsulating agents,” Food Chem., vol. 187, pp. 174–181, Nov. 2015. https://doi.org/10.1016/j.foodchem.2015.04.090 | |
dc.relation | /*ref*/H. Castañeta; R. Gemio; W. Yapu; J. Nogales, “Microencapsulación, un método para la conservación de propiedades fisicoquímicas y biológicas de sustancias químicas,” Rev. Boliv. Química, vol. 28, no. 2, pp. 135–140, 2011.https://www.redalyc.org/articulo.oa?id=426339676015 | |
dc.relation | /*ref*/A. Gharsallaoui; G. Roudaut; O. Chambin; A. Voilley; R. Saurel, “Applications of spray-drying in microencapsulation of food ingredients: An overview,” Food Res. Int., vol. 40, no. 9, pp. 1107–1121, Nov. 2007. https://doi.org/10.1016/j.foodres.2007.07.004 | |
dc.relation | /*ref*/F. Fu; L. Hu, “Temperature sensitive colour-changed composites,” in Advanced High Strength Natural Fibre Composites in Construction, Woodhead Publishing., 2017, pp. 405–423 http://dx.doi.org/10.1016/B978-0-08-100411-1.00015-7 | |
dc.relation | /*ref*/I. Filková; A. S. Mujumdar, “Industrial spay Drying systemns”, in Handbook of Industrial Drying, Second Edition, Revised and Expanded. 1995. https://books.google.com.co/books?hl=es&lr=&id=Sk-3cqsfkxkC&oi=fnd&pg=PA263&dq=Mujumdar,+A.S.+(1995).+Handbook+of+industrial+drying.+Ed.+Marcel+Dekker,+Inc.,+New+York,+pp.+263-309&ots=mJPcBB8NRn&sig=tILixclPOrumNMR2ti9mAAtPzbI#v=onepage&q&f=false | |
dc.relation | /*ref*/O. Anselmino; E. Gilg, “Emulsionen” in Kommentar zum Deutschen Arzneibuch 6. Ausgabe 1926, Berlin, Springer 1928, pp. 532–535. https://doi.org/10.1007/978-3-642-90745-6_200 | |
dc.relation | /*ref*/M. Lozano Berna, “Obtención de microencapsulados funcionales de zumo de opuntia stricta mediante secado por atomización,” Ing. Técnica Ind. Espec. en Química Insdustrial. Univ. Politécnica Cart., pp. 1–69, 2009. https://core.ac.uk/download/pdf/60416955.pdf | |
dc.relation | /*ref*/B. F. Gibbs; S. Kermasha; I. Alli; C. N. Mulligan, “Encapsulation in the food industry: a review,” Int. J. Food Sci. Nutr., vol. 50, no. 3, pp. 213–224, Jan. 1999. https://doi.org/10.1080/096374899101256 | |
dc.relation | /*ref*/S. L. Kosaraju; L. D’ath; A. Lawrence, “Preparation and characterisation of chitosan microspheres for antioxidant delivery,” Carbohydr. Polym., vol. 64, no. 2, pp. 163–167, May 2006. https://doi.org/10.1016/j.carbpol.2005.11.027 | |
dc.relation | /*ref*/P. Natarajan Ezhilarasi; D. Indrani; B. Sankar Jena; C. Anandharamakrishnan, “Microencapsulation of Garcinia fruit extract by spray drying and its effect on bread quality,” J. Sci. Food Agric., vol. 94, no. 6, pp. 1116–1123, Apr. 2014. https://doi.org/10.1002/jsfa.6378 | |
dc.relation | /*ref*/V. M. Dávalos, “Nanoencapsulación de Riboflavina en matrices poliméricas biodegradables empleando la técnica de secado por aspersión,” Instituto Politécnico -Nacional, Centro de investigación en ciencia aplicada y tecnologia unidad Legaria cicata IPN, México D.F, 2014. https://tesis.ipn.mx/bitstream/handle/123456789/15529/Tesis%20Ma%20PTA%202014%28P%29%20-%20Violeta%20Mancilla%20D%C3%A1valos.pdf?sequence=3&isAllowed=y | |
dc.relation | /*ref*/G. O. Fanger, “Microencapsulation: A Brief History and Introduction,” in Microencapsulation, Boston, MA: Springer US, 1974, pp. 1–20. https://doi.org/10.1007/978-1-4684-0739-6_1 | |
dc.relation | /*ref*/J. Luna Guevara; J. López Fuentes; O. Jiménez Gonzalez; L. Luna Guevara “Microencapsulación de algunos compuestos bioactivos mediante secado por aspersión”, Rev. Iberoam. las Ciencias Biológicas y Agropecu., vol. 5, no. 10, pp. 11, Aug 2016. https://doi.org/10.23913/ciba.v5i10.56 | |
dc.relation | /*ref*/E. N. Reyna; G. M. Álvarez; A. Iliná; J. L. Martinez Hernández, “Microencapsulación de componentes bioactivos,” Investig. y Ciencia, Univ. Autónoma Aguascalientes, vol. 23, no. 64, pp. 2–8, Spe. 2015. https://www.redalyc.org/pdf/674/67446014009.pdf | |
dc.relation | /*ref*/J. Torres García; S. Dura Agüero, “Fosfolípidos: Propiedades y efectos sobre la salud,” Nutr. Hosp., vol. 31, no. 1, pp. 76–83, 2015. http://dx.doi.org/10.3305/nh.2015.31.1.7961 | |
dc.relation | /*ref*/C. V. Córdoba, “Las plantas en la poesía de góngora (en el tricentésimo nonagésimo aniversario de su muerte),” Madrid, 2018. https://dialnet.unirioja.es/servlet/articulo?codigo=6594156 | |
dc.relation | /*ref*/V. M. Burin; P. N. Rossa; N. E. Ferreira-Lima; M. C. R. Hillmann; M. T. Boirdignon-Luiz, “Anthocyanins: optimisation of extraction from Cabernet Sauvignon grapes, microcapsulation and stability in soft drink,” Int. J. Food Sci. Technol., vol. 46, no. 1, pp. 186–193, Jan. 2011. https://doi.org/10.1111/j.1365-2621.2010.02486.x | |
dc.relation | /*ref*/A. M. Kalušević et al., “Effects of different carrier materials on physicochemical properties of microencapsulated grape skin extract,” J. Food Sci. Technol., vol. 54, no. 11, pp. 3411–3420, Oct. 2017. https://doi.org/10.1007/s13197-017-2790-6 | |
dc.relation | /*ref*/P. Labuschagne, “Impact of wall material physicochemical characteristics on the stability of encapsulated phytochemicals: A review,” Food Res. Int., vol. 107, pp. 227–247, May. 2018. https://doi.org/10.1016/j.foodres.2018.02.026 | |
dc.relation | /*ref*/M. Rostami; M. Yousefi; A. Khezerlou; M. Aman Mohammadi; S. M. Jafari, “Application of different biopolymers for nanoencapsulation of antioxidants via electrohydrodynamic processes,” Food Hydrocoll., vol. 97, p. 105170, Dec. 2019, https://doi.org/10.1016/j.foodhyd.2019.06.015 | |
dc.relation | /*ref*/M. M. Kenyon, “Modified Starch, Maltodextrin, and Corn Syrup Solids as Wall Materials for Food Encapsulation,” Encapsulation and controlled release of food ingredients, 1995, pp. 42–50. https://doi.org/10.1021/bk-1995-0590.ch004 | |
dc.relation | /*ref*/Z. A. Özbek; P. G. Ergönül, “Optimisation of wall material composition of freeze–dried pumpkin seed oil microcapsules: Interaction effects of whey protein, maltodextrin, and gum Arabic by D–optimal mixture design approach,” Food Hydrocoll., vol. 107, p. 105909, Oct. 2020. https://doi.org/10.1016/j.foodhyd.2020.105909 | |
dc.relation | /*ref*/M. L. Martínez et al., “Oxidative stability of walnut (Juglans regia L.) and chia (Salvia hispanica L.) oils microencapsulated by spray drying,” Powder Technol., vol. 270, no. Part A, pp. 271–277, Jan. 2015. https://doi.org/10.1016/j.powtec.2014.10.031 | |
dc.relation | /*ref*/E. C. Quirino Lacerda; V. M. De Araujo Calado; M. Monteiro; P. V. Finotelli; A. Guedes Torres; D. Perrone, “Starch, inulin and maltodextrin as encapsulating agents affect the quality and stability of jussara pulp microparticles,” Carbohydr. Polym., vol. 151, pp. 500–510, Oct. 2016. https://doi.org/10.1016/j.carbpol.2016.05.093 | |
dc.relation | /*ref*/T. Dey, “Book Review,” J. Dispers. Sci. Technol., vol. 33, no. 6, pp. 928–932, May. 2012. https://doi.org/10.1080/01932691.2011.584482 | |
dc.relation | /*ref*/A. Tolun; N. Artik; Z. Altintas, “Effect of different microencapsulating materials and relative humidities on storage stability of microencapsulated grape pomace extract,” Food Chem., vol. 302, p. 125347, Jan. 2020. https://doi.org/10.1016/j.foodchem.2019.125347 | |
dc.relation | /*ref*/L. S. Kuck; C. Pelayo Zapata Noreña, “Microencapsulation of grape (Vitis labrusca var. Bordo) skin phenolic extract using gum Arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents,” Food Chem., vol. 194, pp. 569–576, Mar. 2016. https://doi.org/10.1016/j.foodchem.2015.08.066 | |
dc.relation | /*ref*/C. Chung; T. Rojanasasithara; W. Mutilangi; D. J. McClements, “Enhanced stability of anthocyanin-based color in model beverage systems through whey protein isolate complexation,” Food Res. Int., vol. 76, pp. 761–768, Oct. 2015. https://doi.org/10.1016/j.foodres.2015.07.003 | |
dc.relation | /*ref*/F. P. Flores; R. K. Singh; W. L. Kerr; R. B. Pegg; F. Kong, “Total phenolics content and antioxidant capacities of microencapsulated blueberry anthocyanins during in vitro digestion,” Food Chem., vol. 153, pp. 272–278, Jun. 2014. https://doi.org/10.1016/j.foodchem.2013.12.063 | |
dc.relation | /*ref*/A. Brandelli; D. J. Daroit; A. P. Folmer Corrêa, “Whey as a source of peptides with remarkable biological activities,” Food Res. Int., vol. 73, pp. 149–161, Jul. 2015. https://doi.org/10.1016/j.foodres.2015.01.016 | |
dc.relation | /*ref*/C. Brown da Rocha; C. Pelayo Zapata Noreña, “Microencapsulation and controlled release of bioactive compounds from grape pomace,” Dry. Technol., pp. 1–15, Mar. 2020. https://doi.org/10.1080/07373937.2020.1741004 | |
dc.relation | /*ref*/I. F. Nata; K.-J. Chen; C.-K. Lee, “Facile microencapsulation of curcumin in acetylated starch microparticles,” J. Microencapsul., vol. 31, no. 4, pp. 344–349, Jun. 2014. https://doi.org/10.3109/02652048.2013.858789 | |
dc.relation | /*ref*/R. Samakradhamrongthai; P. Thakeow; P. Kopermsub; N. Utama-ang, “Microencapsulation of white champaca ( Michelia alba D.C.) extract using octenyl succinic anhydride (OSA) starch for controlled release aroma,” J. Microencapsul., vol. 33, no. 8, pp. 773–784, Nov. 2016. https://doi.org/10.1080/02652048.2016.1264493 | |
dc.relation | /*ref*/S. Badui, Química de los alimentos. 2006. http://depa.fquim.unam.mx/amyd/archivero/Libro-Badui2006_26571.pdf | |
dc.relation | /*ref*/T. Sartori; F. C. Menegalli, “Development and characterization of unripe banana starch films incorporated with solid lipid microparticles containing ascorbic acid,” Food Hydrocoll., vol. 55, pp. 210–219, Apr. 2016. https://doi.org/10.1016/j.foodhyd.2015.11.018 | |
dc.relation | /*ref*/G. Ferreira Nogueira; L. G. Pereira Martin; F. Matta Fakhouri; R. Augustus de Oliveira, “Microencapsulation of blackberry pulp with arrowroot starch and gum arabic mixture by spray drying,” J. Microencapsul., vol. 35, no. 5, pp. 482–493, Oct. 2018. https://doi.org/10.1080/02652048.2018.1538264 | |
dc.relation | /*ref*/C.-S. Wu; H.-T. Liao, “Interface design and reinforced features of arrowroot (Maranta arundinacea) starch/polyester-based membranes: Preparation, antioxidant activity, and cytocompatibility,” Mater. Sci. Eng. C, vol. 70, no. 1, pp. 54–61, Jan. 2017. https://doi.org/10.1016/j.msec.2016.08.067 | |
dc.relation | /*ref*/M. J. Ramírez; G. I. Giraldo; C. E. Orrego, “Modeling and stability of polyphenol in spray-dried and freeze-dried fruit encapsulates,” Powder Technol., vol. 277, pp. 89–96, Jun. 2015. https://doi.org/10.1016/j.powtec.2015.02.060 | |
dc.relation | /*ref*/R. V. Tonon; A. F. Baroni; C. Brabet; O. Gibert; D. Pallet; M. D. Hubinger, “Water sorption and glass transition temperature of spray dried açai (Euterpe oleracea Mart.) juice,” J. Food Eng., vol. 94, no. 3–4, pp. 215–221, Oct. 2009. https://doi.org/10.1016/j.jfoodeng.2009.03.009 | |
dc.relation | /*ref*/A. M. Ribeiro; M. Shahgol; B. N. Estevinho; F. Rocha, “Microencapsulation of Vitamin A by spray-drying, using binary and ternary blends of gum arabic, starch and maltodextrin,” Food Hydrocoll., vol. 108, p. 106029, Nov. 2020. https://doi.org/10.1016/j.foodhyd.2020.106029 | |
dc.relation | /*ref*/Y. Herrera Ardila, “Microencapsulación de compuestos con poder antioxidante extraídos a partir de semillas sin fermentar de Theobroma cacao y Theobroma grandiflorum,” (Tesis Maestria) Universidad Nacional de Colombia, Facultad de Ciencias, Maestría en Ciencia y Tecnología de Alimentos, Bogotá D.C. 2013. https://repositorio.unal.edu.co/bitstream/handle/unal/75080/01107529.2013.pdf?sequence=1&isAllowed=y | |
dc.relation | /*ref*/K. Goud; H. Desai; H. Jin Park, “Recent Developments in Microencapsulation of Food Ingredients,” Dry. Technol., vol. 23, no. 7, pp. 1361–1394, Jul. 2005. https://doi.org/10.1081/DRT-200063478 | |
dc.relation | /*ref*/V. S. Farias‐Cervantes; A. Chávez‐Rodríguez; P. A. García‐Salcedo; P. M. García‐López; J. Casas‐Solís; I. Andrade‐González, “Antimicrobial effect and in vitro release of anthocyanins from berries and Roselle obtained via microencapsulation by spray drying,” J. Food Process. Preserv., vol. 42, no. 10, p. e13713, Oct. 2018. https://doi.org/10.1111/jfpp.13713 | |
dc.relation | /*ref*/N. Ćujić-Nikolić et al., “Chokeberry polyphenols preservation using spray drying: effect of encapsulation using maltodextrin and skimmed milk on their recovery following in vitro digestion,” J. Microencapsul., vol. 36, no. 8, pp. 693–703, Nov. 2019. https://doi.org/10.1080/02652048.2019.1667448 | |
dc.relation | /*ref*/N. V. Naga Jyothi; P. Muthu Prasanna; S. Narayan Sakarkar; K. Surya Prabha; P. Seetha Ramaiah; G. Y. Srawan, “Microencapsulation techniques, factors influencing encapsulation efficiency,” J. Microencapsul., vol. 27, no. 3, pp. 187–197, May 2010. https://doi.org/10.3109/02652040903131301 | |
dc.relation | /*ref*/M. Soria Iturri; C. M. Barros Calado; C. Prentice, “Microparticles of Eugenia stipitata pulp obtained by spray-drying guided by DSC: An analysis of bioactivity and in vitro gastrointestinal digestion,” Food Chem., vol. 334, pp. 127557, Jan. 2021. https://doi.org/10.1016/j.foodchem.2020.127557 | |
dc.relation | /*ref*/D. J. McClements, Food Emulsions. CRC Press, 2015. https://doi.org/10.1201/b18868 | |
dc.relation | /*ref*/C. Anandharamakrishnan; S. Padma Ishwarya, Spray Drying Techniques for Food Ingredient Encapsulation. Chichester, UK: John Wiley & Sons, Ltd, 2015. https://doi.org/10.1002/9781118863985.ch11 | |
dc.relation | /*ref*/C. Anandharamakrishnan; S. P. Ishwarya, Spray Drying Techniques for Food Ingredient Encapsulation, Modeling approach for spray drying and encapsulation applications Chichester, UK: John Wiley & Sons, Ltd, 2015. https://doi.org/10.1002/9781118863985.ch11 | |
dc.relation | /*ref*/P. Becher, “Encyclopedia of Emulsion Technology – Volume I – Basic Theory. New York – Basel, 1983. | |
dc.relation | /*ref*/J. Muñoz; M. D. C. Alfaro; I. Zapata, “Progress in emulsion formulation,” Grasas y Aceites, vol. 58, no. 1, pp. 64–73, Mar. 2007. https://doi.org/10.3989/gya.2007.v58.i1.10 | |
dc.relation | /*ref*/A. Bušić et al., “The Potential of Combined Emulsification and Spray Drying Techniques for Encapsulation of Polyphenols from Rosemary (Rosmarinus officinalis L.) Leaves,” Food Technol. Biotechnol., vol. 56, no. 4, pp. 494–505, 2018. https://doi.org/10.17113/ftb.56.04.18.5680 | |
dc.relation | /*ref*/Z. Liu; J. Hong Zhou; Y. Long Zeng; X. Long Ouyang, “The enhancement and encapsulation of Agaricus bisporus flavor,” J. Food Eng., vol. 65, no. 3, pp. 391–396, Dec. 2004. https://doi.org/10.1016/j.jfoodeng.2004.01.038 | |
dc.relation | /*ref*/B. E. Esquivel González; L. A Ochoa Martínez; O.M. Rutiaga Quiñonez, “Microencapsulación mediante secado por aspersión de compuestos bioactivos,” Rev. Iberoam. Tecnol. Postcosecha, vol. 16, no. 2, pp. 180–192, Jun. 2015. https://www.redalyc.org/pdf/813/81343176006.pdf | |
dc.relation | /*ref*/J. A. Zakarian; C. J. King, “Volatiles loss in the nozzle zone during spray drying of emulsions,” Ind. Eng. Chem. Process Des. Dev., vol. 21, no. 1, pp. 107–113, Jan. 1982. https://doi.org/10.1021/i200016a019 | |
dc.relation | /*ref*/I. Zbicinski; A. Delag; C. Strumillo; J. Adamiec “Advanced experimental analysis of drying kinetics in spray drying,” Chem. Eng. J., vol. 86, no. 1–2, pp. 207–216, Feb. 2002. https://doi.org/10.1016/S1385-8947(01)00291-1 | |
dc.relation | /*ref*/A. Tolun; Z. Altintas; N. Artik, “Microencapsulation of grape polyphenols using maltodextrin and gum arabic as two alternative coating materials: Development and characterization,” J. Biotechnol., vol. 239, pp. 23–33, Dec. 2016. https://doi.org/10.1016/j.jbiotec.2016.10.001 | |
dc.relation | /*ref*/S. Y. Chong; C. W. Wong, “Effect of spray dryer inlet temperature and maltodextrin concentration on colour profile and total phenolic content of Sapodilla (Manilkara zapota) powder,” Int. Food Res. J., vol. 24, no. 6, pp. 2543–2548, Dec. 2017. https://cutt.ly/qlAtput | |
dc.relation | /*ref*/C. Saenz Hernandez; S. Tapia; J. Chavez; P. Robert, “Microencapsulation by spray drying of bioactive compounds from cactus pear (Opuntia ficus-indica),” Food Chem., vol. 114, no. 2, pp. 616–622, May. 2009. https://doi.org/10.1016/j.foodchem.2008.09.095 | |
dc.relation | /*ref*/V. Sharma; A. Bhardwaj, “29 Scanning electron microscopy (SEM) in food quality evaluation,” in Evaluation Technologies for Food Quality, Elsevier, 2019, pp. 743–761. https://doi.org/10.1016/B978-0-12-814217-2.00029-9 | |
dc.relation | /*ref*/B. Bernaola Guevara; B. Y. Quispe Florentino, “Optimización del proceso de microencapsulación de aceite de palta obtenido por CO2 supercrítico,” (Tesis de pregrado), Universidad Nacional del Centro del Perú Facultad de Ingeniería en Industrias Alimentarias, 2019. http://repositorio.uncp.edu.pe/handle/20.500.12894/5051 | |
dc.relation | /*ref*/A. Bucurescu; A. C. Blaga; B. N. Estevinho; F. Rocha, “Microencapsulation of Curcumin by a Spray-Drying Technique Using Gum Arabic as Encapsulating Agent and Release Studies,” Food Bioprocess Technol., vol. 11, no. 10, pp. 1795–1806, Oct. 2018. https://doi.org/10.1007/s11947-018-2140-3 | |
dc.relation | /*ref*/P. M. Figueroa Martínez; A. M. Hurtado Benavides; M. A. Ceballos Ortíz, “Microencapsulación mediante secado por aspersión de aceite de mora (Rubus glaucus) extraido con CO2 supercrítico,” Rev. Colomb. Química, vol. 45, no. 2, Nov. 2016. http://dx.doi.org/10.15446/rev.colomb.quim.v45n2.57481 | |
dc.relation | /*ref*/T. Cardoso; A. Gonçalves; B. N. Estevinho; F. Rocha, “Potential food application of resveratrol microparticles: Characterization and controlled release studies,” Powder Technol., vol. 355, pp. 593–601, Oct. 2019. https://doi.org/10.1016/j.powtec.2019.07.079 | |
dc.relation | /*ref*/P. K. Binsi et al., “Structural and oxidative stabilization of spray dried fish oil microencapsulates with gum arabic and sage polyphenols: Characterization and release kinetics,” Food Chem., vol. 219, pp. 158–168, Mar. 2017. https://doi.org/10.1016/j.foodchem.2016.09.126 | |
dc.relation | /*ref*/S. Jokić; N. Nastić; S. Vidović; I. Flanjak; K. Aladić; J. Vladić, “An Approach to Value Cocoa Bean By-Product Based on Subcritical Water Extraction and Spray Drying Using Different Carriers,” Sustainability, vol. 12, no. 6, Mar. 2020. https://doi.org/10.3390/su12062174 | |
dc.relation | /*ref*/G. Mercado-Mercado; L. de la R. Carrillo; A. Wall-Medrano; J. A. López Díaz; E. Álvarez-Parrilla, “Compuestos polifenólicos y capacidad antioxidante de especias típicas consumidas en México,” Nutr. Hosp., vol. 28, no. 1, pp. 36–46, 2013. https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0212-16112013000100005 | |
dc.relation | /*ref*/R. L. Prior; X. Wu; K. Schaich, “Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements,” J. Agric. Food Chem., vol. 53, no. 10, pp. 4290–4302, May. 2005. https://doi.org/10.1021/jf0502698 | |
dc.rights | Copyright (c) 2021 TecnoLógicas | en-US |
dc.rights | http://creativecommons.org/licenses/by-nc-sa/4.0 | en-US |
dc.source | TecnoLógicas; Vol. 24 No. 51 (2021); e1836 | en-US |
dc.source | TecnoLógicas; Vol. 24 Núm. 51 (2021); e1836 | es-ES |
dc.source | 2256-5337 | |
dc.source | 0123-7799 | |
dc.subject | Microencapsulation | en-US |
dc.subject | spray drying | en-US |
dc.subject | antioxidant capacity | en-US |
dc.subject | protection of polyphenols | en-US |
dc.subject | fruits | en-US |
dc.subject | encapsulants and encapsulation efficiency | en-US |
dc.subject | Microcápsulas | es-ES |
dc.subject | secado por aspersión | es-ES |
dc.subject | capacidad antioxidante | es-ES |
dc.subject | protección de polifenoles | es-ES |
dc.subject | frutas | es-ES |
dc.subject | encapsulantes y eficiencia de encapsulación | es-ES |
dc.title | Microencapsulation of Bioactive Compounds in Diverse Matrices by Spray Drying: A Literature Review | en-US |
dc.title | Microencapsulación por secado por aspersión de compuestos bioactivos en diversas matrices: una revisión | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Review Article | en-US |
dc.type | Artículos de revisión | es-ES |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
tecnologia [520]