Mostrar el registro sencillo del ítem

Comportamiento termo fluidodinámico del acero en un molde de colada continua: una revisión

dc.creatorGonzález-Rondón, Yordy
dc.creatorRengel-Hernández, José Eduardo
dc.date2021-06-11
dc.date.accessioned2021-08-19T16:21:47Z
dc.date.available2021-08-19T16:21:47Z
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1856
dc.identifier10.22430/22565337.1856
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/12077
dc.descriptionA review of the literature has been carried out to identify what is known in relation to heat transfer mechanisms, thermo-fluid dynamic behavior, solidification characteristics, factors that influence the origin of defects in steel and the use of strategies that impact on a reduction of the defects that originate, mainly, in the mold of the continuous casting of steel. The methodology consisted of collecting and synthesizing fragmented knowledge, comparing the information found in different sources, and giving a clear and up-to-date answer on the thermo-fluid dynamic behavior of the steel in the casting mold. As a result of this review, it can be concluded that serious defects, such as cracks and depressions, are related to thermomechanical behavior; cracks are associated with turbulent flow, variation in the level of the meniscus, high casting speed and inadequate behavior of the strainer powder, and segregation is related to steel contraction, casting temperature and speed, and heat flow in the contour of the piece. It has also been found that, despite the complexity of the phenomena that occur in the mold, it is possible to achieve the formation of a suitable steel crust and reduce the appearance of defects, performing the actions that promote an adequate adjustment of the parameters of the mold. Furthermore, it is essential to apply mold taper and oscillation practices, nozzle configuration and application of electromagnetic fields, to produce quality steel.en-US
dc.descriptionSe ha realizado una revisión de la literatura para identificar qué se sabe en relación con los mecanismos de transferencia de calor, comportamiento termofluidodinámico, características de la solidificación, factores que influyen en el origen de defectos en el acero y uso de estrategias que impactan en una reducción de los defectos que se originan, principalmente, en el molde de la colada continua de acero. La metodología consistió en colectar y sintetizar conocimientos fragmentados, comparar la información encontrada en diferentes fuentes, y dar una respuesta, clara y actualizada, sobre el comportamiento termofluidodinámico del acero en el molde de colada. Como resultado de esta revisión se puede concluir que los defectos graves, como grietas y depresiones, están relacionados con el comportamiento termomecánico; las grietas se asocian al flujo turbulento, variación en el nivel del menisco, alta velocidad de colada y comportamiento inadecuado del polvo colador y la segregación se relaciona con la contracción del acero, temperatura y velocidad de colada y el flujo de calor en el contorno de la pieza. También se ha encontrado que, a pesar de la complejidad de los fenómenos que ocurren en el molde, se puede lograr la formación de una costra de acero adecuada y reducir la aparición de defectos, realizando las acciones que propicien un ajuste adecuado de los parámetros del molde. Además, es imprescindible aplicar prácticas de conicidad y oscilación del molde, configuración de buza y aplicación de campos electromagnéticos, para producir un acero de calidad.es-ES
dc.formatapplication/pdf
dc.formatapplication/zip
dc.formattext/xml
dc.formattext/html
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1856/2020
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1856/2055
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1856/2056
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1856/2069
dc.relation/*ref*/A. Nájera Bastidas, “Análisis del flujo de fluidos y transferencia de calor sobre la calidad de palanquillas de acero”, (Tesis Doctorado), Instituto Politécnico Nacional, México, 2010. https://tesis.ipn.mx/handle/123456789/9869
dc.relation/*ref*/R. Mannheim, “Introducción general a la colada continua”, Revista Remetallica, no. 5, pp. 28-38. 1983. http://www.revistas.usach.cl/ojs/index.php/remetallica/article/view/1675
dc.relation/*ref*/J. Calvo Muñoz, “Efecto de los elementos residuales e impurezas en la ductilidad y mecanismos de fragilización en caliente de un acero de construcción 0,23C – 0,9Mn – 0,13Si”, (Tesis Doctoral), Departamento de ciencia de los materiales e ingeniería, Metalurgía, Universitat Politècnica de Catalunya, Barcelona, 2006. https://www.tdx.cat/handle/10803/6048#page=1
dc.relation/*ref*/B. Flores Garza, “Descripción del proceso de colada continua mediante CFD”, (Tesis de maestría), Universidad Autónoma de Nuevo León, 2010. http://eprints.uanl.mx/5669/
dc.relation/*ref*/J. Coley Zapata, “Fundición continua, una oportunidad para mejorar la calidad de los hierros", Revista metalactual.com. Procesos, pp. 10-17. 2010. https://docplayer.es/17754952-Fundicion-continua-una-oportunidad-para-mejorar-la-calidad-de-los-hierros-procesos-ventajas-de-un-proceso-subestimado-jonathan-coley-zapata.html
dc.relation/*ref*/R. Kumar, “Computational Fluid Dynamic (CFD) simulation for continuous casting process of steels", (Tesis de Maestría), Department of Metallurgical and Materials Engineerin, National Institute of Technology Rourkela, 2015. http://ethesis.nitrkl.ac.in/7397/
dc.relation/*ref*/M. Aballe, “Colada continua y semicontinua de productos industriales”, en Conference: 2ª Jornada de Ciencia y Tecnología de Materiales. Barcelona 1992. https://www.researchgate.net/publication/271586961_Colada_continua_y_semicontinua_de_productos_industriales
dc.relation/*ref*/A. Ramírez Cruz; O. Hernández Nava; A. Aldama Moreno; M. Ramírez Vargas, “Caracterización de fundentes para molde de colada continua de acero”, Acta Universitaria, vol. 17, no. 1, pp. 52-58. 2007. https://www.redalyc.org/articulo.oa?id=41617105
dc.relation/*ref*/I. Hahn; M. Schneider; J. Terhaar; J. Jarolimeck; R. Sauermann, “Quality Prediction of Cast Ingots”. International Conference on Casting, Rolling and Forging ICRF, 2012. https://www.bing.com/search?q=Quality+Prediction+of+Cast+Ingots%E2%80%9D.+International+Conference+on+Casting%2C+Rolling+and+Forging+ICRF&cvid=aa2473c811894762998d8603e08ded4b&aqs=edge..69i57.388j0j1&pglt=2083&FORM=ANNTA1&PC=ACTS
dc.relation/*ref*/F. Saldaña-Salas; E. Torres-Alonso; J. A. Ramos-Banderas; G. Solorio-Díaz; C. A. Hernández-Bocanegra, “Analysis of the Depth of Immersion of the Submerged Entry Nozzle on the Oscillations of the Meniscus in a Continuous Casting Mold”, Metals, vol. 9, no. 5, pp. 596, May. 2019. https://doi.org/10.3390/met9050596
dc.relation/*ref*/J. Romo Castañeda, “Estudio de la formación de especies mineralógicas en el molde de colada continua de planchón delgado de acero”, (Tesis de maestría), Instituto politécnico nacional. Ciudad de México, 2011. https://tesis.ipn.mx/handle/123456789/8227
dc.relation/*ref*/S. Kumar, “Mould thermal response and formation of defects in the continuous casting of steel billets”, (Tesis Doctoral), Departament of Metals and Materials Engineering, The University Of British Columbia. January 1996. http://hdl.handle.net/2429/4821
dc.relation/*ref*/M. El-Anwar; G. Megahed; M. Bedewy; M. El-Sherbiny; N. Chazly, “Simulation of Fluid Flow In Thin Slab Casting Process”, Conference: 9th International Mining, Petroleum, and Metallurgical Engineering Conference (MPM), Cairo University, 2005. https://www.researchgate.net/publication/285232672_Simulation_of_fluid_flow_and_heat_transfer_in_thin_slab_casting_process
dc.relation/*ref*/J. Belisario, “Evaluación de la efectividad del proceso de colada en la reducción de defectos de salpicaduras en las palanquillas producidas en la acería 150 TM de Sidor”, (Tesis de grado), Universidad Nacional Experimental de Guayana, 2011.https://docplayer.es/76751765-Ciudad-guayana-junio-de.html
dc.relation/*ref*/K. Mills; P. Ramirez; P. Lee; B. Santillana; B. Thomas; R. Morales, “Looking into continuous casting mould”, Ironmaking and Steelmaking, vol. 41, no. 4, pp. 242-249, May. 2014. https://doi.org/10.1179/0301923313Z.000000000255
dc.relation/*ref*/C. Cicutti, “Transferencia de calor en la colada continua de aceros, I parte, el molde”, Revista Metalurgia, Madrid, vol. 33, no, 5, pp. 333-344. 1977. https://doi.org/10.3989/revmetalm.1997.v33.i5.846
dc.relation/*ref*/J. L. Enríquez Berciano; E. Tremps Guerra; S De E. de Bengy; D. Fernández Segovia, Colada del Acero, Monografías sobre Tecnología del Acero, Parte II. Madrid. 2009. http://oa.upm.es/1669/1/MONO_TREMPS_2009_01.pdf
dc.relation/*ref*/V. Chang; P. Bolsaitis, “Simplified model for heat transfer and solidification in continuous casting”, Latin American Journal of Metallurgy and Materials, vol. 2, no. 2, pp. 130- 138,1982. https://www.semanticscholar.org/paper/S%C3%ADmplified-model-for-heat-transfer-and-in-casting-.-Chang-Bolsaitis/0b268e246214220e5c90854d642c969c3a41bd2b
dc.relation/*ref*/M. A. Clavijo, “Consideraciones sobre la colada continua del acero”, Boletín de la Sociedad Española de Cerámica y Vidrio, vol. 13, no. 4, Jul. 1974. https://dialnet.unirioja.es/servlet/articulo?codigo=7599309
dc.relation/*ref*/C. Real; L. Hoyos; F. Cervantes; R. Miranda; M. Palomar; J. González, “Influencia de la geometría de la buza sobre la transferencia de calor en un molde de colada continua de acero”, 8º Congreso Iberoamericano de Ingeniería Mecánica, Cusco, 2007. http://congreso.pucp.edu.pe/cibim8/pdf/29/29-33.pdf
dc.relation/*ref*/B. G. Thomas, “Modeling of Continuous Casting”. Chapter 5. The AISE Steel Foundation, Pittsburgh, PA. 2003. http://ccc.illinois.edu/publications.html
dc.relation/*ref*/B. A. Pereira; J. A. Castro; A. J. Da Silva; J. A. Duran, “Modelado del proceso de colada continua de aceros libres de intersticios”, Inf. tecnol, vol. 21, no. 6, 2010. http://dx.doi.org/10.4067/S0718-07642010000600002
dc.relation/*ref*/D. Pengfei, “Numerical modeling of porosity and macrosegregation in continuous casting of steel”, (Thesis Doctor) University of Iowa, 2013. https://doi.org/10.17077/etd.h7xxkots
dc.relation/*ref*/X. B. Zhang; W. Chen; L. Zhang, “A coupled model on fluid flow, heat transfer and solidification in continuous casting mold”, China Foundry. vol. 14, no. 5, pp. 416-420, Sep. 2017. https://doi.org/10.1007/s41230-017-7171-2
dc.relation/*ref*/J. A. de Castro; B. Amaral Pereira; R. Sampaio de Souza; E. Mendes de Oliveira; I. L. Ferreira, “Numerical study of turbulent flows and heat transfer in coupled industrial-scale tundish of a continuous casting material in steel production”, Numerical Simulations in Engineering and Science, Chapter 16, 2018. https://www.intechopen.com/books/numerical-simulations-in-engineering-and-science/numerical-study-of-turbulent-flows-and-heat-transfer-in-coupled-industrial-scale-tundish-of-a-contin
dc.relation/*ref*/A. Cwudzińsk; J. Jowsa; P. Przegrałek, “Interaction of liquid steel with mould flux in continuous casting bloom mould – numerical simulations and industrial experiences”, Arch. Metall. Mater., vol. 61, no 4, pp. 2013–2020. 2016. http://doi.org/10.1515/amm-2016-0325
dc.relation/*ref*/J. K. Brimacombe; I. V. Samarasekera, “Fundamental Analysis of the Continuous Casting Process for Quality Improvements", Indo-US Workshop on Materials Processing, 179-222, 1988.
dc.relation/*ref*/S. Kumar, “An Expert System to Diagnose Quality Problems i n the Continuous Casting of Steel Billets", (Tesis Maestría), Departament of metals and Matherials Engineering, The University of British Columbia, Vancouver, Canada, 1991. https://dx.doi.org/10.14288/1.0078575
dc.relation/*ref*/J. K. Brimacombe; K. Sorimachi, “Crack Formation in the Continuous Casting of Steel", Metallurgical Transactions B., Sep. 1977, pp. 489-505. https://doi.org/10.1007/BF02696937
dc.relation/*ref*/H. Arcos Gutierrez; G. Barrera Cardiel; R. Escudero García, “Simulación matemática para la optimización del patrón de flujo entregado por una buza para el molde de colada continua de planchón delgado”, Revista Materia, vol. 23, no. 2, Jul. 2018. http://dx.doi.org/10.1590/s1517-707620180002.0447
dc.relation/*ref*/M. Vynnycky, “Continuous Casting”. Metals, vol. 9, no. 6, pp. 643, Jun. 2019. https://doi.org/10.3390/met9060643
dc.relation/*ref*/J. Guirao-Goris; A. Olmedo Salas; E. Ferrer Ferrandis, “El artículo de revisión”. Revista Iberoamericana de Enfermería Comunitaria, en prensa. 2007. https://www.u-cursos.cl/medicina/2011/1/KI03010406032/1/material_docente/bajar?id_material=343053
dc.relation/*ref*/M. Cué Brugueras, G. Díaz Alonso; A. Díaz Martínez; M. de la C Valdés Abreu, “El artículo de revisión”. Revista Cubana de Salud Pública; vol. 34, no. 4, Dic. 2008. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-34662008000400011
dc.relation/*ref*/T. Saracevik; J. B. Wood, “Consolidation of information: a handbook on evaluation, restructuring and repackaging of scientific and technical information”. Pilot edition. PGI-81WS/ 16, 1981. https://eric.ed.gov/?id=ED226753
dc.relation/*ref*/L. Cortés-Rico; G. Piedrahita-Solórzano, “Interacciones basadas en gestos: revisión crítica”, TecnoLógicas, vol. 22, pp. 119-132, 2019. https://doi.org/10.22430/22565337.1512
dc.relation/*ref*/J. D. Ospina-Correa; J. G. Osorio-Cachaya; Á. M. Henao-Arroyave; D. A. Palacio-Acevedo; J. Giraldo-Builes, “Retos y oportunidades para la industria minera como potencial impulsor del desarrollo en Colombia”, TecnoLógicas, vol. 23, no. 50, 2021. https://doi.org/10.22430/22565337.1683
dc.relation/*ref*/B. Thomas; G. Li; A. Moitra; D. Habing, “Analysis of Thermal and Mechanical Behavior of Copper Molds during Continuous Casting of Steel Slabs”, 80th Steelmaking Conference, Chicago, IL, April, 13-16. ISS Herty Award, 1997. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.997.6940&rep=rep1&type=pdf
dc.relation/*ref*/S. Bockus, “Regulation of heat transfer in the horizontal continuous casting moulds”, Proceedings of the 4th WSEAS Int. Conf. on Heat Transfer, Thermal Engineering And Environment, Elounda, Greece, pp. 94-98, 2006. https://www.researchgate.net/publication/268178317_Regulation_of_Heat_Transfer_in_the_Horizontal_Continuous_Casting_Moulds
dc.relation/*ref*/J. P. Pulgar Hormazábal, “Perfil de solidificación de acero bajo distintas condiciones operacionales en colada continua de palanquillas”, (Tesis de grado), Universidad de Concepción, Facultad de Ingeniería, 2018. http://repositorio.udec.cl/jspui/handle/11594/2953
dc.relation/*ref*/R. J. Chung Carrero, “Efecto del enfriamiento del líquido y la solidificación primaria en la aleación Al-0,55%Fe-0,37% Si”, (Tesis de grado), Universidad Simón Bolívar, Sartenejas, 2004. https://silo.tips/download/efecto-del-enfriamiento-del-liquido-y-la-solidificacion-primaria-en-la-aleacion
dc.relation/*ref*/M. G. Shen; Y. J. Liu; X. L. Zhu; Z. Y. Xiao; Y. C. Liu, “Study on the influence of new riser structure on the quality of steel ingot”, Metalurgija, vol, 58, no. (1-2), pp. 47-50. 2019. https://hrcak.srce.hr/206477
dc.relation/*ref*/J. Barco, J. Palacios; C. Ojeda; M. Ojanguren, “Modelización global del proceso de colada continua”, Revista de Metalurgia., Vol. Extr. pp. 463-468, 2005. https://doi.org/10.3989/revmetalm.2005.v41.iExtra.1077
dc.relation/*ref*/J. L. Acevedo Cabello, “Predicción microestructural de palanquillas de acero al carbono obtenidas por colada continua empleando una aproximación macro-micro”, (Tesis Doctoral), Universitat Politécnica de Catalunya, España, 2013. https://www.tdx.cat/handle/10803/116822
dc.relation/*ref*/M. Shen; Z. Zang; K. Shu, “Mathematics simulation and experiments of continuous casting with strip feeding in mold”. Metalurgija, vol. 56, no. 3-4, pp. 315-318, 2017. https://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=266727
dc.relation/*ref*/R. Alberny; A. Leclercq; D. Aumary; M. Lahousse, “La lingotière de coulée continue de brames et son bilan thermique”, Revista Metalúrgica., vol. 73, no. 7-8, pp- 545-558. Jul. 1976. https://doi.org/10.1051/metal/197673070545
dc.relation/*ref*/E. A. Mizikar, “Mathematical heat transfer model for solidification of continuously cast steel slabs”, The American Institute of Mining, Metallurgical, and Petroleum Engineers, PART XI – November.1967. https://www.onemine.org/document/abstract.cfm?docid=27385&title=PART-XI--November-1967--Papers--Mathematical-Heat-Transfer-Model-for-Solidification-of-Continuously-Cast-Steel-Slabs
dc.relation/*ref*/Z. Peng; Y. ping Bao; Y. nan Chen; L. kang Yang; C. Xie; F. Zhang, “Effects of calculation approaches for thermal conductivity on the simulation accuracy of billet continuous casting”., Int. J. Miner. Metall. Mater., vol. 21, 18–25. Jan. 2014. https://doi.org/10.1007/s12613-014-0860-6
dc.relation/*ref*/B.G. Thomas; I. V. Samarasekera; J. K. Brimacombe, “Comparison of numerical modeling techniques for complex, two-dimensional, transient heat-conduction problems”., Metall. Mater. Trans B., vol. 15, pp. 307–318, Aug. 1984. https://doi.org/10.1007/BF02667334
dc.relation/*ref*/J. Szekely; V. Stanek, “On heat transfer and liquid mixing in the continuous casting of steel”., Metall. Trans., vol. 1, pp. 119–126. Apr. 1970. https://link.springer.com/article/10.1007/BF02819250
dc.relation/*ref*/A. Ramírez-López; R. Aguilar-López; M. Palomar-Pardavé; M. A. Romero; D. Muñoz-Negrón, “Simulation of heat transfer in steel billets during continuous casting”., Int. J. Miner. Metall. Mater., vol. 17, pp. 403–416. Jul. 2010. https://doi.org/10.1007/s12613-010-0333-5
dc.relation/*ref*/M. Vynnycky, “Applied mathematical modelling of continuous casting processes: A Review", Metals, vol. 8, no. 11, nov. 2018. https://doi.org/10.3390/met8110928
dc.relation/*ref*/J. Madias, “Innovaciones en la colada continua de semiproductos para laminados largos”, Acero Latinoamericano., no. 567, pp. 26- 37, Mar, 2018. https://dialnet.unirioja.es/servlet/articulo?codigo=7125492
dc.relation/*ref*/I. V. Samarasekera; D. L. Anderson; J. K. Brimacombe, “The Thermal Distortion of Continuous-Casting Billet Molds”, Metallurgical Transactions B., vol. l3B, pp. 91-104. Dec. 1980. https://doi.org/10.1007/BF02666960
dc.relation/*ref*/I. V. Samarasekera; J. K. Brimacombe, “The Influence of Mold Behavior on the Production of Continuously Cast Steel Billets”, Metallurgical Transactions B. vol. l3, pp. 105-116. Dec. 1982. https://doi.org/10.1007/BF02666961
dc.relation/*ref*/P. Ni; M. Ersson; L. Ingemar Jonsson; T. Zhang; P. Jönsson, “Numerical Study on the Influence of a Swirling Flow Tundish on Multiphase Flow and Heat Transfer in Mold”, Metals, vol. 8, no. 5, pp. 368, May. 2018. https://doi.org/10.3390/met8050368
dc.relation/*ref*/R. Manojlovic, “Mathematical modeling of solidification Process of continuous casting steel slabs”, Journal of Chemical Technology and Metallurgy, vol. 48, no. 4, pp. 419-427, May. 2013. https://dl.uctm.edu/journal/node/j2013-4/13-Manojilovich%20%20419-427.pdf
dc.relation/*ref*/B. Thomas; L. Zhang, “Mathematical Modeling of Fluid Flow in Continuous Casting”, ISIJ International, vol. 41, no. 10, pp. 1181–1193, Oct. 2001. https://doi.org/10.2355/isijinternational.41.1181
dc.relation/*ref*/H. T. Abuluwefa; M. A. Al-Ahresh; A. Bosen, “Factors Affecting Solidification of Steel in the Mould During Continuous Casting of Steel Billets”, Procedures of the international mulconference of engineers and computer scientists, Hong Kong, Vol. II, 2012, pp. 14-16. https://www.researchgate.net/publication/290512678_Factors_Affecting_Solidification_of_Steel_in_the_Mould_during_Continuous_Casting_of_Steel_Billets
dc.relation/*ref*/L. Bai; B. Wang; H. Zhong; J. Ni; Q. Zhai; J. Zhang, “Experimental and numerical simulations of the solidification process in continuous casting of slab”, Metals, vol. 6, no. 3, Mar. 2016. https://doi.org/10.3390/met6030053
dc.relation/*ref*/E. I. Peterson, “Mold flux crystallization and mold thermal behavior”, (Tesis de Maestria), Missouri University of Science and Technology, 2017. https://scholarsmine.mst.edu/masters_theses/7656/
dc.relation/*ref*/Y. Kong; D. Chen; Q. Liu; M. Long, “A Prediction Model for Internal Cracks during Slab Continuous Casting”, Metals, vol. 9, no. 5, pp. 587, May. 2019. https://doi.org/10.3390/met9050587
dc.relation/*ref*/K. Tsutsumi; T. Nagasaka; M. Hino, “Surface roughness of solidified mold flux in continuous casting process.” ISIJ international, vol. 39, no. 11, pp. 1150-1159. 1999. https://doi.org/10.2355/isijinternational.39.1150
dc.relation/*ref*/G. Krauss, “Solidification, segregation, and banding in carbon and alloy steels”, Metall Mater Trans B, vol. 34, no. 6, pp. 781–792, Dec. 2003. https://doi.org/10.1007/s11663-003-0084-z
dc.relation/*ref*/A. Bermúdez, “Modelos matemáticos en solidificación, Aplicaciones en metalurgia”, Pub. Mat. UAB. no. 22, pp. 213- 222, 1980. https://doi.org/10.5565/publmat_22180_43
dc.relation/*ref*/A. Grill; J. K. Brimacombe, “Influence of carbon content on rate of heat extraction in the mould of a continous-casting machine”, Ironmaking Steelmaking, vol. 3, no. 2, pp. 76-79, 1976. https://www.researchgate.net/publication/282396924_INFLUENCE_OF_CARBON_CONTENT_ON_RATE_OF_HEAT_EXTRACTION_IN_THE_MOULD_OF_A_CONTINUOUS-CASTING_MACHINE
dc.relation/*ref*/H. Cui; K. Zhang; Z. Wang; B. Chen; B. Liu; J. Qing; Z. Li, “Formation of Surface Depression during Continuous Casting of High-Al TRIP Steel”. Metals, vol. 9, no. 2, pp. 204, Feb. 2019. https://doi.org/10.3390/met9020204
dc.relation/*ref*/J. Saavedra Poma, “Influencia de la transferencia de calor en la formación de grietas internas”. (Tesis pregrado), Universidad Nacional de Ingeniería, Facultad de Ingeniería Geológica, Minera y Metalúrgica. Lima, Perú, 2009. https://1library.co/document/yevm657z-influencia-transferencia-calor-formacion-grietas-internas.html
dc.relation/*ref*/I. V. Samarasekera, “Thermal distortion of continuous casting moulds”. (Tesis Doctoral) The University of British Columbia, Vancouver, Canada, 1980. https://link.springer.com/article/10.1007/BF02666960
dc.relation/*ref*/J. Elfsberg, “Oscillation Mark Formation in Continuous Casting Processes”. (Tesis pregrado), Royal Institute of Technology SE-100 44 Stockholm, Sweden, 2003. http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A7585&dswid=9845
dc.relation/*ref*/X. Sun; B. Li; H. Lu; Y. Zhong; Z. Ren; Z. Lei, “Steel/Slag Interface Behavior under Multifunction Electromagnetic Driving in a Continuous Casting Slab Mold”, Metals, vol. 9, no. 9, 983, Sep. 2019. https://doi.org/10.3390/met9090983
dc.relation/*ref*/E. Brandaleze; E. González; M. Bentancour, “Mediciones del Porcentaje de Cristalinidad y Determinación del Comportamiento de Polvos Coladores en el Rango entre 1000 °C Y 1200 °C”, Revista Matéria, vol 8, no. 3, pp. 238 – 248. 2003. http://www.materia.coppe.ufrj.br/sarra/artigos/artigo10245/
dc.relation/*ref*/A. Sorek; Z. Kudlinski, “The influence of the near-meniscus zone in continuous casting mold on the surface quality of the continuous casting ingots”. Archives of Metallurgy and Materials., vol. 57, no. 1 2012. https://doi.org/10.2478/v10172-012-0036-1
dc.relation/*ref*/R. Chaudhary; G. Lee; B. G. Thomas; S. Cho; S. H. Kim; O. D. Kwon. “Effect of Stopper-Rod Misalignment on Fluid Flow in Continuous Casting of Steel”. Metallurgical and Materials Transactions B, vol. 42, no. 2, pp. 300-315, Feb. 2011. https://doi.org/10.1007/s11663-011-9478-5
dc.relation/*ref*/A. Robles Álvarez; H. López García; P. Fernández-Cueto Arguedas; A. M. Díaz Fernández; L. F. Sancho Méndez “Predicción de CLOGGING en la colada continua mediante análisis del sistema de control de nivel”, In XXIX Jornadas de Automática, Tarragona, 2008. https://www.virtualpro.co/biblioteca/prediccion-de-clogging-en-la-colada-continua-mediante-analisis-del-sistema-de-control-de-nivel
dc.relation/*ref*/D. Wu; S. Cheng; J. Zhao, “Performance comparison of three kinds of submerged entry nozzles for bloom mold”, J. Iron Steel Res. Int., vol. 15, pp. 315–321, 2008. https://www.researchgate.net/publication/295702791_Performance_Comparison_of_Three_Kinds_of_Submerged_Entry_Nozzles_for_Bloom_Mold
dc.relation/*ref*/M. Long; H. Chen; D. Chen; S. Yu; B. Liang; H. Duan, “A Combined Hybrid 3-D/2-D Model for Flow and Solidification Prediction during Slab Continuous Casting”, Metals, vol. 8, no. 3, Mar. 2018. https://doi.org/10.3390/met8030182
dc.relation/*ref*/H. Sun; L. Li; C. Liu, “Novel Opposite Stirring Mode in Bloom Continuous Casting Mould by Combining Swirling Flow Nozzle with EMS”, Metals, vol. 8, no. 10, pp. 842, 2018. https://doi.org/10.3390/met8100842
dc.relation/*ref*/H. Sun; J. Zhang, “Macrosegregation improvement by swirling flow nozzle for bloom continuous castings”, Metall. Mater. Trans. B, vol. 45, pp. 936–946, Dec. 2014. https://doi.org/10.1007/s11663-013-9999-1
dc.relation/*ref*/P. Wang et al., “Initial Transfer Behavior and Solidification Structure Evolution in a Large Continuously Cast Bloom with a Combination of Nozzle Injection Mode and M-EMS”, Metals, vol. 9, no. 10, pp. 1083, Oct. 2019. https://doi.org/10.3390/met9101083
dc.relation/*ref*/C. Real; L. Hoyos; F. Cervantes; R. Miranda; M. Palomar; J. González, “Dinámica de fluidos en una Buza Bifurcada y su influencia en un molde de colada continua”, 8º Congreso Iberoamericano de Ingeniería Mecánica, Cusco, 2007. http://congreso.pucp.edu.pe/cibim8/pdf/16/16-16.pdf
dc.relation/*ref*/K. Rackers; B. Thomas, “Clogging in Continuous Casting Nozzles”, 78th Steelmaking Conference Proceedings, Nashville, TN, 1995. http://ccc.illinois.edu/PDF%20Files/Publications/95_ISS%5b1%5d.Conf.paper_post.pdf
dc.relation/*ref*/M. H. Zare; A. H. Meysami; S. Mahmoudi; M. Hajisafari; M. MazarAtabaki. “Simulation of fluid flow and solididification in the funnel type crystalizer of thin slab continuous cast”. Orient J Chem, vol. 29, no. 4, Jan. 2014. http://www.orientjchem.org/vol29no4/simulation-of-fluid-flow-and-solididification-in-the-funnel-type-crystalizer-of-thin-slab-continuous-cast/
dc.relation/*ref*/D. Jiang; M. Zhu; L. Zhang, “Numerical Simulation of Solidification Behavior and Solute Transport in Slab Continuous Casting with S-EMS”, Metals, vol. 9, no. 4, pp. 452, Apr. 2019. https://doi.org/10.3390/met9040452
dc.relation/*ref*/M. Guimarães; A. L. Vasconcellos da Costa e Silva, “Evaluating segregation in HSLA steels using computational thermodynamics”, Journal of Materials Research and Technology, vol. 4, no. 4, pp. 353–358, Dec. 2015. https://doi.org/10.1016/j.jmrt.2015.06.002
dc.relation/*ref*/W. Zhang; S. Luo; Y. Chen; W. Wang; M. Zhu. “Numerical Simulation of Fluid Flow, Heat Transfer, Species Transfer, and Solidification in Billet Continuous Casting Mold with M-EMS”. Metals, vol. 9, no. 1, pp. 66. Jan. 2019. https://doi.org/10.3390/met9010066
dc.relation/*ref*/M. C. Flemings, “Solute Segregation”, Encyclopedia of Materials: Science and Technology (Second Edition). pp. 8753-8755, 2001. https://doi.org/10.1016/B0-08-043152-6/01566-7
dc.relation/*ref*/P. Emtage; K. Wunnenberg; T. Hatonen; M. Bobadilla; J. Llanos; M. De Santis, “Improved Control of Segregation in Continuous Casting and Hot Rolling Processes”, European Commission, Luxembourg, International, reporte EUR 20886 En, pp. 1-403, 2003. https://op.europa.eu/en/publication-detail/-/publication/c3a31e47-4788-46f9-9149-44417775c678
dc.relation/*ref*/R. Niu; B. Li; Z. Liu; X. Li, “Melting of Moving Strip during Steel Strip Feeding in Continuous Casting Process”, Steel research international, vol. 89, no. 5, 2-13. Feb. 2018. https://doi.org/10.1002/srin.201700407
dc.relation/*ref*/M. Vynnycky; S. Saleem; K. M. Devine; B. J. Florio; S. L. Mitchell; S. B. G. O’Brien, “On the formation of fold-type oscillation marks in the continuous casting of steel”, R. Soc. open sci. vol. 4, no. 6. Jun. 2017. https://doi.org/10.1098/rsos.170062
dc.relation/*ref*/R. López; J. Usart; D. Cerutti, “Medición de nivel en los moldes de colada continua”. 46° Seminario de Aceria Internacional. ABM Week, Rio de Janeiro, 2015. https://docplayer.es/80666654-Medicion-de-nivel-en-los-moldes-de-colada-continua.html
dc.relation/*ref*/X. Yan; B. Jia; Q. Wang; S. He; Q. Wang, “Mold nonsinusoidal oscillation mode and its effect on slag infiltration for lubrication and initial shell growth during steel continuous casting”, Metals, vol. 9, no. 4, pp. 418, Apr. 2019. https://doi.org/10.3390/met9040418
dc.relation/*ref*/H. Wu; Y. Xu; Z. Huo; F. Yue; P. Lu, “Physical modeling of oscillation Effect on fluid flow in mold”, Metalurgija vol. 54, no. 3, pp. 465-468, 2015. https://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=194437
dc.relation/*ref*/J. Sengupta; B. G. Thomas, “Visualization of Hook and Oscillation Mark Formation Mechanism in Ultra-Low Carbon Steel Slabs During Continuous Casting”. JOMe, Journal of Metals – electronic edition, pp. 1- 21, Dec. 2006. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.657.5567
dc.relation/*ref*/J. Cibulka; R. Krzok; R. Hermann; D. Bocek; J. Cupek; K. Michalek, “Impact of oscillation parameters on surface quality of cast billets”, Arch. Metall. Mater. vol. 61, no 1, pp. 283–288, 2016. https://doi.org/10.1515/amm-2016-0054
dc.relation/*ref*/O. Pütz; O. Breitfeld; S. Rödl. “Investigations of Flow Conditions and Solidification in Continuous Casting Moulds by Advanced Simulation Techniques”. Steel Research International, vol. 74, no. 11-12, pp. 686–692. 2003. https://onlinelibrary.wiley.com/doi/abs/10.1002/srin.200300251
dc.relation/*ref*/Q. Fang; H. Ni; B. Wang; H. Zhang; F. Ye, “Effects of EMS Induced Flow on Solidification and Solute Transport in Bloom Mold”, Metals, vol. 7, no. 3, pp. 72, Feb. 2017. https://doi.org/10.3390/met7030072
dc.relation/*ref*/L. Hui-cheng; L. Yu-xiang; Z. Yun-hu; L. Zhen; Z. Qi-jie Zhai, “Effects of hot top pulsed magneto-oscillation on solidification structure of steel ingot”, China Foundry, vol. 15, no. 2, pp. 110-116, Mar, 2018. https://doi.org/10.1007/s41230-018-7198-z
dc.relation/*ref*/B. Wang; Z. Yang, X. Zhang, Y. Wang, C. Nie, Q. Liu; H. Dong, “Analysis of the effects of electromagnetic stirring on solidification structure of bearing steel”, Metalurgija, vol. 54, no. 2, pp. 327-330, 2015. https://hrcak.srce.hr/128953
dc.rightsCopyright (c) 2021 TecnoLógicasen-US
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0en-US
dc.sourceTecnoLógicas; Vol. 24 No. 51 (2021); e1856en-US
dc.sourceTecnoLógicas; Vol. 24 Núm. 51 (2021); e1856es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectContinuous casting molden-US
dc.subjectindustrial steelen-US
dc.subjectsolidification of steelen-US
dc.subjectthermo-fluid dynamicsen-US
dc.subjectheat transferen-US
dc.subjectMolde de colada continuaes-ES
dc.subjectAcero industriales-ES
dc.subjectSolidificación del aceroes-ES
dc.subjecttermofluidodinámicaes-ES
dc.subjecttransferencia de calores-ES
dc.titleThermo-Fluid Dynamic Behavior of Steel in a Continuous Casting Mold: a reviewen-US
dc.titleComportamiento termo fluidodinámico del acero en un molde de colada continua: una revisiónes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeReview Articleen-US
dc.typeArtículos de revisiónes-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem