Mostrar el registro sencillo del ítem
Modeling the Evolution of SARS-CoV-2 Using a Fractional-Order SIR Approach
Modelando la evolución del SARS-COV-2 usando una aproximación fraccionaria
dc.creator | Quintero, Anderson S. | |
dc.creator | Gutiérrez-Carvajal , Ricardo E. | |
dc.date | 2021-07-12 | |
dc.date.accessioned | 2021-08-19T16:21:48Z | |
dc.date.available | 2021-08-19T16:21:48Z | |
dc.identifier | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1866 | |
dc.identifier | 10.22430/22565337.1866 | |
dc.identifier.uri | http://test.repositoriodigital.com:8080/handle/123456789/12078 | |
dc.description | To show the potential of non-commensurable fractional-order dynamical systems in modeling epidemiological phenomena, we will adjust the parameters of a fractional generalization of the SIR model to describe the population distributions generated by SARS-CoV-2 in France and Colombia. Despite the completely different contexts of both countries, we will see how the system presented here manages to adequately model them thanks to the flexibility provided by the fractional-order differential equations. The data for Colombia were obtained from the records published by the Colombian Ministry of Information Technology and Communications from March 24 to July 10, 2020. Those for France were taken from the information published by the Ministry of Solidarity and Health from May 1 to September 6, 2020. As for the methodology implemented in this study, we conducted an exploratory analysis focused on solving the fractional SIR model by means of the fractional transformation method. In addition, the model parameters were adjusted using a sophisticated optimization method known as the Bound Optimization BY Quadratic Approximation (BOBYQA) algorithm. According to the results, the maximum error percentage for the evolution of the susceptible, infected, and recovered populations in France was 0.05%, 19%, and 6%, respectively, while that for the evolution of the susceptible, infected, and recovered populations in Colombia was 0.003%, 19%, and 38%, respectively. This was considered for data in which the disease began to spread and human intervention did not imply a substantial change in the community. | en-US |
dc.description | Con el objetivo de exponer el potencial de los sistemas dinámicos de orden fraccionario, inconmensurables para la modelación de fenómenos epidemiológicos, en este artículo se ajustarán los parámetros de una generalización fraccionaria del modelo SIR (susceptibles, infectados y recuperados) para describir las distribuciones poblacionales generadas por el SARS-CoV-2 en Francia y Colombia, dos países cuyos contextos son totalmente diferentes. Asimismo, se mostrará cómo el sistema presentado logra describir adecuadamente los dos contextos debido a la flexibilidad proporcionada por las ecuaciones diferenciales de orden fraccionario. Los datos, para Colombia, fueron obtenidos del registro hecho por el Ministerio de Tecnologías de la Información y las Comunicaciones, considerándose las fechas del 24 de marzo del 2020 hasta el 10 de julio del mismo año. Por su parte, para Francia, los datos fueron tomados del monitoreo hecho por el Ministerio de Solidaridad y Salud, en un periodo comprendido desde el 1 de mayo de 2020 hasta el 6 de septiembre del mismo año. La metodología seguida es un análisis exploratorio centrado en la solución del modelo SIR fraccionario a partir del método de la transformación fraccionaria, ajustado mediante un plan sofisticado de optimización llamado algoritmo BOBYQA. Los resultados presentados muestran que el porcentaje de error máximo para la evolución de la población susceptible, infectada y recuperada en Francia es de 0.05 %, 19 % y 6 %, respectivamente. Mientras tanto, en Colombia se tiene un valor correspondiente de 0.003 %, 19 %, 38 %, esto para datos en los que se inició la dispersión de la enfermedad, donde la intervención humana no tuvo un cambio contundente en la comunidad. | es-ES |
dc.format | application/pdf | |
dc.format | application/zip | |
dc.format | text/xml | |
dc.format | text/html | |
dc.language | eng | |
dc.publisher | Instituto Tecnológico Metropolitano (ITM) | en-US |
dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1866/2081 | |
dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1866/2086 | |
dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1866/2087 | |
dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1866/2088 | |
dc.relation | /*ref*/World Health Organization, “WHO Coronavirus Disease (COVID-19) Dashboard”, 2020. https://covid19.who.int/ | |
dc.relation | /*ref*/Q. Li et al., “Early transmission dynamics in Wuhan, China, of novel coronavirus– infected pneumonia”. N. Engl. J. Med, vol. 382, no. 13, Mar. 2020. https://doi.org/10.1056/NEJMoa2001316 | |
dc.relation | /*ref*/World Health Organization, “Novel Coronavirus (2019-nCoV): situation report, 3”, Jan. 2020. https://apps.who.int/iris/bitstream/handle/10665/330762/nCoVsitrep23Jan2020-eng.pdf | |
dc.relation | /*ref*/R. Lu et al., “Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding”, The Lancet, vol. 395, no. 10224, pp. 565-574, Feb. 2020. https://doi.org/10.1016/S0140-6736(20)30251-8 | |
dc.relation | /*ref*/M. Nicola et al., “The socio-economic implications of the coronavirus pandemic (COVID-19): A review”, International journal of surgery, vol. 78, pp. 185-193, Jun, 2020. https://doi.org/10.1016/j.ijsu.2020.04.018 | |
dc.relation | /*ref*/UNESCO, “UNESCO’s support: Educational response to COVID-19”, 2020. https://en.unesco.org/covid19/educationresponse/support | |
dc.relation | /*ref*/H. Ritchie et al., “Mortality Risk of COVID-19”, Our World In Data, 2020. https://ourworldindata.org/mortality-risk-covid | |
dc.relation | /*ref*/A. J. Christopher; N. Magesh; G. Tamil Preethi, “Dynamical Analysis of Corona-virus (COVID- 19) Epidemic Model by Differential Transform Method”, Research Square preprint, (2020). https://www.researchsquare.com/article/rs-25819/v1 | |
dc.relation | /*ref*/S. Ahmad; A. Ullah; Q. M. Al-Mdallal; H. Khan; K. Shaha; A. Khand, “Fractional order mathematical modeling of COVID-19 transmission”, Chaos, Solitons & Fractals, vol. 139, Oct. 2020. https://doi.org/10.1016/j.chaos.2020.110256 | |
dc.relation | /*ref*/J. L. Romeu, “A Markov Chain Model for Covid-19 Survival Analysis”, Jul. 2020. https://web.cortland.edu/matresearch/MarkovChainCovid2020.pdf | |
dc.relation | /*ref*/R. Takele, “Stochastic modelling for predicting COVID-19 prevalence in East Africa Countries”, Infectious Disease Modelling, vol. 5, pp. 598–607, 2020. https://doi.org/10.1016/j.idm.2020.08.005 | |
dc.relation | /*ref*/A. Zeb; E. Alzahrani; V. S. Erturk; G. Zaman, “Mathematical model for coronavirus disease 2019 (COVID-19) containing isolation class”, BioMed research international, 2020. https://doi.org/10.1155/2020/3452402 | |
dc.relation | /*ref*/F. Ndaïrou; I. Area; J. J. Nieto; D. F. M. Torres, “Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan”, Chaos, Solitons & Fractals, vol. 135, Jun 2020. https://doi.org/10.1016/j.chaos.2020.109846 | |
dc.relation | /*ref*/E. B. Postnikov, “Estimation of COVID-19 dynamics “on a back-of-envelope”: Does the simplest SIR model provide quantitative parameters and predictions?”, Chaos, Solitons & Fractals, vol. 135, Jun. 2020. https://doi.org/10.1016/j.chaos.2020.109841 | |
dc.relation | /*ref*/F. A. Rihan, “Numerical modeling of fractional-order biological systems”, Abstract and Applied Analysis, vol. 2013, Aug. 2013. https://doi.org/10.1155/2013/816803 | |
dc.relation | /*ref*/A. Loverro, “Fractional calculus: history, definitions and applications for the engineer”, 2004. https://www.researchgate.net/publication/266882369_Fractional_Calculus_History_Definitions_and_Applications_for_the_Engineer | |
dc.relation | /*ref*/J. A. Tenreiro Machado et al., “Some applications of fractional calculus in engineering”, Mathematical problems in engineering, vol. 2010, Article ID. 639801, Nov. 2010. https://doi.org/10.1155/2010/639801 | |
dc.relation | /*ref*/Md. Rafiul Islam; A. Peace; D. Medina; T. Oraby, “Integer versus fractional order seir deterministic and stochastic models of measles”, Int. J. Environ. Res. Public Health, vol. 17, no. 6, Mar. 2020. https://doi.org/10.3390/ijerph17062014 | |
dc.relation | /*ref*/M. W. Hirsch; S. Smale; R. L Devaney, Differential equations, dynamical systems, and an introduction to chaos. Academic press, 2013. | |
dc.relation | /*ref*/W. C. Roda; M. B.Varughese; D. Han; M. Y. Li, “Why is it difficult to accurately predict the COVID-19 epidemic?”, Infectious Disease Modelling, vol 5, pp. 271- 281, 2020. https://doi.org/10.1016/j.idm.2020.03.001 | |
dc.relation | /*ref*/Worldometer, "Covid-19 Coronavirus Pandemic", 2020. https://www.worldometers.info/coronavirus/ | |
dc.relation | /*ref*/S. A. Lauer; K. H. Grantz; Q. Bi; F. K. Jones; Q. Zheng, “The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application”, Annals of internal medicine, vol. 172, no. 9, pp. 577–582, May. 2020. https://doi.org/10.7326/M20-0504 | |
dc.relation | /*ref*/E. C. De Oliveira; J. A. Tenreiro Machado, "A review of definitions for fractional derivatives and integral”, Mathematical Problems in Engineering, vol. 2014, Jun. 2014 . https://doi.org/10.1155/2014/238459 | |
dc.relation | /*ref*/I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol 198, Elsevier, 1998. | |
dc.relation | /*ref*/Z. M. Odibat, “Computing eigenelements of boundary value problems with fractional derivatives”, Applied Mathematics and Computation, vol 215, no. 8, pp. 3017–3028, Dec. 2009. https://doi.org/10.1016/j.amc.2009.09.049 | |
dc.relation | /*ref*/A. Arikoglu; I. Ozkol, “Solution of fractional differential equations by using differential transform method”, Chaos, Solitons & Fractals, vol. 34, no. 5, pp. 1473–1481, Dec. 2007. https://doi.org/10.1016/j.chaos.2006.09.004 | |
dc.relation | /*ref*/V. S. Erturk; S. Momani, “Solving systems of fractional differential equations using differential transform method”, Journal of Computational and Applied Mathematics, vol. 215, no. 1, pp. 142–151, May. 2008. https://doi.org/10.1016/j.cam.2007.03.029 | |
dc.relation | /*ref*/C. Jacques Kat; P. S. Els, “Validation metric based on relative error”, Mathematical and Computer Modelling of Dynamical Systems, vol. 18, no. 5, pp. 487–520, Mar. 2012. https://doi.org/10.1080/13873954.2012.663392 | |
dc.relation | /*ref*/W. L. Oberkampf; M. F. Barone, “Measures of agreement between computation and experiment: validation metrics”, Journal of Computational Physics, vol. 217, no. 1, pp. 5–36, Sep. 2006. https://doi.org/10.1016/j.jcp.2006.03.037 | |
dc.relation | /*ref*/M. J. D. Powell, “The BOBYQA algorithm for bound constrained optimization without derivatives”, Cambridge NA Report NA2009/06, University of Cambridge, Cambridge, 2009. https://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf | |
dc.relation | /*ref*/C. Cartis; L. Roberts; O. Sheridan-Methven, “Escaping local minima with derivative-free methods: a numerical investigation”, arXiv preprint arXiv:1812.11343. Oct. 2019. https://arxiv.org/pdf/1812.11343.pdf | |
dc.relation | /*ref*/C. Cartis; J. Fiala; B. Marteau; L. Roberts, “Improving the flexibility and robustness of model-based derivative-free optimization solvers”, ACM Transactions on Mathematical Software, vol. 45, no. 3, pp. 1–41, Aug. 2019. https://doi.org/10.1145/3338517 | |
dc.rights | Copyright (c) 2021 TecnoLógicas | en-US |
dc.rights | http://creativecommons.org/licenses/by-nc-sa/4.0 | en-US |
dc.source | TecnoLógicas; Vol. 24 No. 51 (2021); e1866 | en-US |
dc.source | TecnoLógicas; Vol. 24 Núm. 51 (2021); e1866 | es-ES |
dc.source | 2256-5337 | |
dc.source | 0123-7799 | |
dc.subject | SARS-CoV-2 modeling | en-US |
dc.subject | fractional calculus | en-US |
dc.subject | SIR model (Susceptible-Infected-Recovered) | en-US |
dc.subject | biological system modeling | en-US |
dc.subject | Modelamiento del SARS-CoV-2 | es-ES |
dc.subject | cálculo fraccionario | es-ES |
dc.subject | modelo SIR (susceptible, infectada, recuperada) | es-ES |
dc.subject | modelamiento de sistemas biológicos | es-ES |
dc.title | Modeling the Evolution of SARS-CoV-2 Using a Fractional-Order SIR Approach | en-US |
dc.title | Modelando la evolución del SARS-COV-2 usando una aproximación fraccionaria | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Research Papers | en-US |
dc.type | Artículos de investigación | es-ES |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
tecnologia [520]