Mostrar el registro sencillo del ítem

Sistema de gestión de energía descentralizado basado en multiagentes para operación de múltiples microrredes

dc.creatorSánchez Silvera, Alfredo
dc.creatorGuarnizo-Marín, José Guillermo
dc.creatorForero-García, Edwin Francisco
dc.creatorMontenegro-Martínez, Davis
dc.date2021-06-09
dc.date.accessioned2021-08-19T16:21:48Z
dc.date.available2021-08-19T16:21:48Z
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1880
dc.identifier10.22430/22565337.1880
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/12079
dc.descriptionMicrogrids have experienced a significant development in recent years because they represent a technical alternative to respond to contingencies in electrical distribution networks and increase the level of distributed generation, among other benefits. The objective of this study is to design an architecture based on multi-agent systems that can be used to manage the operating mode of a distributed microgrid system in an islanded environment. In such architecture, the correct connection of the common bus that links all the microgrids with the multi-agent system is maintained, and overloads and deep discharges in the batteries are avoided. The methodology implemented here is empirical-analytical. The simulation is based on a review of the state of the art that was conducted to find a strategy that can coordinate a composite microgrid system where the microgrids are connected to the same distribution system operating in islanded mode. The system was simulated using OpenDSS-G and Python. The results obtained suggest that a decentralized energy management system based on the theory of multi-agent systems can have important benefits; for example, the autonomous nature of microgrids for power generation in non-interconnected areas. Finally, multi-agent theory can be employed to create more reliable distributed generation systems (due to their autonomous decision-making capacity), meet the electrical demands of neighboring microgrids, and jointly prevent overcharges and deep discharges in batteries.en-US
dc.descriptionEn años recientes, las microrredes han logrado un considerable desarrollo debido a que representan una alternativa técnica para responder a contingencias en la red de distribución, como también a incrementar el nivel de generación distribuida, entre otros beneficios. Por tal motivo, el presente artículo presenta un modelo de gestión energética basado en sistemas multiagentes para microrredes que operan en modo isla. El objetivo de esta investigación es el diseño de un sistema multiagente que permita gestionar el funcionamiento de un conjunto de microrredes distribuidas en un entorno aislado, además de mantener la correcta conexión con el bus común que une todas las microrredes, el sistema multiagente debe evitar sobrecargas y descargas profundas en las baterías. La metodología implementada es de tipo empírico analítica, la simulación comienza con una revisión del estado del arte, en búsqueda de una estrategia que permita coordinar un sistema de microrredes compuesto, donde estas están conectadas al mismo sistema de distribución operando en modo isla. La simulación del sistema se realizó mediante OpenDSS-G y Python. Los resultados obtenidos sugieren que un sistema de gestión de energía descentralizado, basado en la teoría de sistemas de agentes múltiples, puede tener importantes beneficios como, por ejemplo, el carácter autónomo de las microrredes para la generación de energía en zonas no interconectadas. Finalmente, con la teoría de multiagente se pueden crear sistemas de generación distribuida más confiables debido a su capacidad autónoma de toma de decisiones, para cubrir demandas eléctricas desde microrredes vecinas y conjuntamente prevenir sobrecargas y profundas descargas en las baterías.es-ES
dc.formatapplication/pdf
dc.formatapplication/zip
dc.formattext/xml
dc.formattext/html
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1880/2014
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1880/2051
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1880/2052
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1880/2066
dc.relation/*ref*/J. D. Garzón-Hidalgo; A. J. Saavedra-Montes, “Una metodología de diseño de micro redes para zonas no interconectadas de Colombia,” TecnoLógicas, vol. 20, no. 39, pp. 39–53, May 2017. https://doi.org/10.22430/22565337.687
dc.relation/*ref*/D. López-García; A. Arango-Manrique; S. X. Carvajal-Quintero, “Integration of distributed energy resources in isolated microgrids: the Colombian paradigm,” TecnoLógicas, vol. 21, no. 42, pp. 13–30, May. 2018. https://doi.org/10.22430/22565337.774
dc.relation/*ref*/C.-H. Yoo; I. Y. Chung; H. J. Lee; S. S. Hong, “Intelligent Control of Battery Energy Storage for Multi-Agent Based Microgrid Energy Management,” Energies, vol. 6, no. 10, pp. 4956–4979, Sep. 2013. https://doi.org/10.3390/en6104956
dc.relation/*ref*/J. M. Ramírez Scarpetta et al., “Control en Microrredes de A. C: Control Jerárquico, Tecnologías y Normativa,”, Comité de Estudios C6 - Sistemas de distribución y generación dispersa, Documento técnico, Bogotá, 2020. http://www.cigrecolombia.org/Documents/Documentos-t%C3%A9cnicos/DT-6.2-Control%20en%20Microrredes%20de%20Corriente%20Alterna%20Control%20Jer%C3%A1rquico,%20Tecnolog%C3%ADas%20y%20Normativa.pdf
dc.relation/*ref*/M. N. Mojdehi; N. Webb, “Microgrid interoperability: First steps from policy to implementation,” in 2016 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference, ISGT, Minneapolis, 2016. https://doi.org/10.1109/ISGT.2016.7781025
dc.relation/*ref*/L. Che; M. Khodayar; M. Shahidehpour, “Only connect: Microgrids for distribution system restoration,” IEEE Power Energy Mag., vol. 12, no. 1, pp. 70–81, Jan. 2014. https://doi.org/10.1109/MPE.2013.2286317
dc.relation/*ref*/A. Majzoobi; A. Khodaei, “Application of Microgrids in Supporting Distribution Grid Flexibility,” IEEE Trans. Power Syst., vol. 32, no. 5, pp. 3660–3669, Sep. 2017. https://doi.org/10.1109/TPWRS.2016.2635024
dc.relation/*ref*/D. Wu; F. Tang; T. Dragicevic; J. C. Vasquez; J. M. Guerrero, “A Control Architecture to Coordinate Renewable Energy Sources and Energy Storage Systems in Islanded Microgrids,” IEEE Trans. Smart Grid, vol. 6, no. 3, pp. 1156–1166, May. 2015. https://doi.org/10.1109/TSG.2014.2377018
dc.relation/*ref*/J. A. P. Lopes; C. L. Moreira; A. G. Madureira, “Defining Control Strategies for MicroGrids Islanded Operation,” IEEE Trans. Power Syst., vol. 21, no. 2, pp. 916–924, May 2006. https://doi.org/10.1109/TPWRS.2006.873018
dc.relation/*ref*/H. Mahmood; D. Michaelson; J. Jiang, “Strategies for Independent Deployment and Autonomous Control of PV and Battery Units in Islanded Microgrids,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 3, no. 3, pp. 742–755, Sep. 2015. https://doi.org/10.1109/JESTPE.2015.2413756
dc.relation/*ref*/T. L. Vandoorn; J. C. Vasquez; J. De Kooning; J. M. Guerrero; L. Vandevelde, “Microgrids: Hierarchical Control and an Overview of the Control and Reserve Management Strategies,” IEEE Ind. Electron. Mag., vol. 7, no. 4, pp. 42–55, Dec. 2013. https://doi.org/10.1109/MIE.2013.2279306
dc.relation/*ref*/J. Rocabert; A. Luna; F. Blaabjerg; P. Rodríguez, “Control of Power Converters in AC Microgrids,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4734–4749, Nov. 2012. https://doi.org/10.1109/TPEL.2012.2199334
dc.relation/*ref*/D. Wu; F. Tang; T. Dragicevic; J. C. Vasquez; J. M. Guerrero, “Autonomous Active Power Control for Islanded AC Microgrids With Photovoltaic Generation and Energy Storage System,” IEEE Trans. Energy Convers., vol. 29, no. 4, pp. 882–892, Dec. 2014. https://doi.org/10.1109/TEC.2014.2358612
dc.relation/*ref*/A. H. Fathima; K. Palanisamy, “Optimization in microgrids with hybrid energy systems – A review,” Renew. Sustain. Energy Rev., vol. 45, pp. 431–446, May. 2015. https://doi.org/10.1016/J.RSER.2015.01.059
dc.relation/*ref*/G. Zhabelova; V. Vyatkin; V. N. Dubinin, “Toward Industrially Usable Agent Technology for Smart Grid Automation,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2629–2641, Apr. 2015. https://doi.org/10.1109/TIE.2014.2371777
dc.relation/*ref*/P. H. Nguyen; W. L. Kling; P. F. Ribeiro, “A Game Theory Strategy to Integrate Distributed Agent-Based Functions in Smart Grids,” IEEE Trans. Smart Grid, vol. 4, no. 1, pp. 568–576, Mar. 2013. https://doi.org/10.1109/TSG.2012.2236657
dc.relation/*ref*/L. Hernandez et al., “A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants,” IEEE Commun. Mag., vol. 51, no. 1, pp. 106–113, Jan. 2013. https://doi.org/10.1109/MCOM.2013.6400446
dc.relation/*ref*/C. P. Nguyen; A. J. Flueck, “Agent Based Restoration With Distributed Energy Storage Support in Smart Grids,” IEEE Trans. Smart Grid, vol. 3, no. 2, pp. 1029–1038, Jun. 2012. https://doi.org/10.1109/TSG.2012.2186833
dc.relation/*ref*/B. Ramachandran; S. K. Srivastava; C. S. Edrington; D. A. Cartes, “An Intelligent Auction Scheme for Smart Grid Market Using a Hybrid Immune Algorithm,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4603–4612, Oct. 2011. https://doi.org/10.1109/TIE.2010.2102319
dc.relation/*ref*/H. Dagdougui; R. Sacile, “Decentralized Control of the Power Flows in a Network of Smart Microgrids Modeled as a Team of Cooperative Agents,” IEEE Trans. Control Syst. Technol., vol. 22, no. 2, pp. 510–519, Mar. 2014. https://doi.org/10.1109/TCST.2013.2261071
dc.relation/*ref*/C. M. Colson; M. H. Nehrir, “Comprehensive Real-Time Microgrid Power Management and Control With Distributed Agents,” IEEE Trans. Smart Grid, vol. 4, no. 1, pp. 617–627, Mar. 2013. https://doi.org/10.1109/TSG.2012.2236368
dc.relation/*ref*/O. Palizban; K. Kauhaniemi; J. M. Guerrero, “Microgrids in active network management—Part I: Hierarchical control, energy storage, virtual power plants, and market participation,” Renew. Sustain. Energy Rev., vol. 36, pp. 428–439, Aug. 2014. https://doi.org/10.1016/J.RSER.2014.01.016
dc.relation/*ref*/W. Liu; W. Gu; W. Sheng; X. Meng; Z. Wu; W. Chen, “Decentralized Multi-Agent System-Based Cooperative Frequency Control for Autonomous Microgrids With Communication Constraints,” IEEE Trans. Sustain. Energy, vol. 5, no. 2, pp. 446–456, Apr. 2014. https://doi.org/10.1109/TSTE.2013.2293148
dc.relation/*ref*/Q. Li; F. Chen; M. Chen; J. M. Guerrero; D. Abbott, “Agent-Based Decentralized Control Method for Islanded Microgrids,” IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 637-649, Mar. 2016. https://doi.org/10.1109/TSG.2015.2422732
dc.relation/*ref*/C.-X. Dou; B. Liu, “Multi-Agent Based Hierarchical Hybrid Control for Smart Microgrid,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 771–778, Jan. 2013. https://doi.org/10.1109/TSG.2012.2230197
dc.relation/*ref*/N. L. Diaz; J. G. Guarnizo; M. Mellado; J. C. Vasquez; J. M. Guerrero, “A Robot-Soccer-Coordination Inspired Control Architecture Applied to Islanded Microgrids,” IEEE Trans. Power Electron., vol. 32, no. 4, pp. 2728–2742, Apr. 2017. https://doi.org/10.1109/TPEL.2016.2572262
dc.relation/*ref*/A. Kantamneni; L. E. Brown; G. Parker; W. W. Weaver, “Survey of multi-agent systems for microgrid control,” Eng. Appl. Artif. Intell., vol. 45, pp. 192–203, Oct. 2015. https://doi.org/10.1016/J.ENGAPPAI.2015.07.005
dc.relation/*ref*/M. Baun; M. A. Awadallah; B. Venkatesh, “Implementation of load-curve smoothing algorithm based on battery energy storage system,” in 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Vancouver, 2016, pp. 1–5. https://doi.org/10.1109/CCECE.2016.7726668
dc.relation/*ref*/T. S. Mahmoud; D. Habibi; O. Bass, “Fuzzy logic for smart utilisation of Storage Devices in a typical microgrid,” in 2012 International Conference on Renewable Energy Research and Applications (ICRERA), Nagasaki, 2012, pp. 1–6. https://doi.org/10.1109/ICRERA.2012.6477333
dc.relation/*ref*/K. Alqunun; P. A. Crossley, “Rated energy impact of BESS on total operation cost in a microgrid,” in 2016 IEEE Smart Energy Grid Engineering (SEGE), Oshawa, 2016, pp. 292–300. https://doi.org/10.1109/SEGE.2016.7589540
dc.relation/*ref*/R. Morsali; S. Ghorbani; R. Kowalczyk; R. Unland, “On Battery Management Strategies in Multi-agent Microgrid Management,” in Business Information Systems Workshops, Springer, Cham. 2017, pp. 191–202. https://doi.org/10.1007/978-3-319-69023-0_17
dc.relation/*ref*/M. Batool; F. Shahnia; S. M. Islam, “Multi-level supervisory emergency control for operation of remote area microgrid clusters,” J. Mod. Power Syst. Clean Energy, vol. 7, no. 5, pp. 1210–1228, Jan. 2019. https://doi.org/10.1007/s40565-018-0481-6
dc.relation/*ref*/F. Shahnia; S. Bourbour; A. Ghosh, “Coupling Neighboring Microgrids for Overload Management Based on Dynamic Multicriteria Decision-Making,” IEEE Trans. Smart Grid, vol. 8, no. 2, pp. 969–983, Mar. 2017. https://doi.org/10.1109/TSG.2015.2477845
dc.relation/*ref*/E. Bullich-Massagué; F. Díaz-González; M. Aragüés-Peñalba; F. Girbau-Llistuella; P. Olivella-Rosell; A. Sumper, “Microgrid clustering architectures,” Appl. Energy, vol. 212, pp. 340–361, Feb. 2018. https://doi.org/10.1016/j.apenergy.2017.12.048
dc.relation/*ref*/M. Wooldridge, “Intelligent Agents: The Key Concepts,” Multi-Agent Systems and Applications II, Springer, Berlin, Heidelberg, 2002, pp. 3–43. https://doi.org/10.1007/3-540-45982-0_1
dc.relation/*ref*/C. S. Karavas; G. Kyriakarakos; K. G. Arvanitis; G. Papadakis, “A multi-agent decentralized energy management system based on distributed intelligence for the design and control of autonomous polygeneration microgrids,” Energy Convers. Manag., vol. 103, pp. 166–179, Oct. 2015. https://doi.org/10.1016/j.enconman.2015.06.021
dc.relation/*ref*/D. Montenegro; M. Hernandez; R. Dugan, OpenDSS-G (fomer DSSim-PC), 2013. https://sourceforge.net/projects/dssimpc/?source=navbar
dc.relation/*ref*/F. Shahnia; S. Bourbour, “A practical and intelligent technique for coupling multiple neighboring microgrids at the synchronization stage,” Sustain. Energy, Grids Networks, vol. 11, pp. 13–25, Sep. 2017. https://doi.org/10.1016/j.segan.2017.06.002
dc.relation/*ref*/J. A. Gil Tobón; M. A. Muñoz Marín, “Curva de Cargabilidad,” Derivado del curso de Instalaciones Eléctricas Industriales II, pp. 1–5, 2013. https://es.scribd.com/document/143045728/Curva-de-Cargabilidad-Articulo
dc.relation/*ref*/F. Z. Harmouch; N. Krami; N. Hmina, “A multiagent based decentralized energy management system for power exchange minimization in microgrid cluster,” Sustain. Cities Soc., vol. 40, pp. 416–427, Jul. 2018. https://doi.org/10.1016/j.scs.2018.04.001
dc.relation/*ref*/IDEAM, “Atlas de Radiación Solar, Ultravioleta y Ozono de Colombia.” 2015. http://atlas.ideam.gov.co/visorAtlasRadiacion.html
dc.rightsCopyright (c) 2021 TecnoLógicasen-US
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0en-US
dc.sourceTecnoLógicas; Vol. 24 No. 51 (2021); e1880en-US
dc.sourceTecnoLógicas; Vol. 24 Núm. 51 (2021); e1880es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectMicrogridsen-US
dc.subjectmulti-agent systemsen-US
dc.subjectelectrical energy managementen-US
dc.subjectdistributed systemen-US
dc.subjectOpenDSS-G simulationen-US
dc.subjectMicrorredeses-ES
dc.subjectsistemas multiagentees-ES
dc.subjectgestión de energía eléctricaes-ES
dc.subjectsistema distribuidoes-ES
dc.subjectSimulador OpenDSS-Ges-ES
dc.titleDecentralized Energy Management System Based on Multi-agents to Operate Multiple Microgridsen-US
dc.titleSistema de gestión de energía descentralizado basado en multiagentes para operación de múltiples microrredeses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem