Mostrar el registro sencillo del ítem

Simulación de una antena microcinta rectangular espiral multibanda para la aplicación de captación de energía de radiofrecuencia

dc.creatorZapata-Ochoa, Edison Andrés
dc.creatorLópez-Giraldo, Francisco
dc.creatorGoéz, Germán David
dc.date2021-07-12
dc.date.accessioned2021-08-19T16:21:49Z
dc.date.available2021-08-19T16:21:49Z
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1924
dc.identifier10.22430/22565337.1924
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/12081
dc.descriptionThis study analyses the influence of variations in the thickness of the dielectric substrate and the position of the microstrip slots created in the radiating patch of a microstrip antenna. Automatic optimization software, i.e., CST Studio, was used to simulate an antenna for radio frequency energy harvesting made of ARLON AD450 substrate with a dielectric constant of 4.5, tangential losses of 0.035 and a thickness of 3 mm. In this design, several slots were applied to form a square loop. The results show that, by increasing the thickness of the substrate that separates the ground plane from the radiating patch, the return loss of the parameter was reduced, and, at the same time, the antenna gain rose. Cutting out slots, as well as their thickness and location in the radiating patch, produced a shift in the antenna’s resonant frequency. Likewise, the array presented here allowed resonant frequencies around 1.6 GHz, 2.38 GHz, 3.38 GHz, and 4.16 GHz, with a gain between 2.48 dB and 7.66 dB. This antenna design produced improvements in gain and radiation pattern. Creating slots in the radiating patch modified the surface current distribution of the antenna and generated new resonant frequencies. The air gaps produced between the copper and the substrate improved the antenna’s performance. Similarly, the spaces created by the substrate between the ground plane and the radiating patch decreased the gain losses in the antenna due to the reduction of the copper caused when the slots were made. The proposed antenna presented a multiband behavior immediately after the slots were added to the patch. Evaluating substrates and structures is useful for developing integrated microstrip antennas for RF energy harvesting systems.en-US
dc.descriptionEl presente estudio realizó un análisis de la influencia que ejercen las variaciones del grosor del sustrato dieléctrico y de la posición de las ranuras de microcinta creadas en el parche radiante de una antena de microcinta. El trabajo presentó la simulación mediante el software de optimización automática CST Studio, de una antena para captura de energía de radiofrecuencia empleando el substrato ARLON AD450 con constante dieléctrica de 4.5, pérdidas tangenciales de 0.035 y espesor de 3 mm. En este diseño se aplicaron varias ranuras hasta formar una espira cuadrada. Los resultados obtenidos evidenciaron que al aumentar el espesor del sustrato que separa el plano de tierra del parche radiante, se produce una disminución en las pérdidas de retorno del parámetro y al mismo tiempo se da un aumento en la ganancia de la antena. La creación de ranuras, el grosor y la ubicación de estas en el parche radiante producen un desplazamiento en la frecuencia de resonancia. Asimismo, el arreglo presentado permite frecuencias de resonancia alrededor de 1.6 GHz, 2.38 GHz, 3.38 GHz y 4.16 GHz, con una ganancia entre 2.48 dB y 7.66 dB. Este diseño de antena permitió mejoras en ganancia y en el patrón de radiación. La creación de ranuras en el parche radiante modificó la distribución de corriente de superficie de la antena y generó nuevas frecuencias de resonancia. Los espacios de aire creados entre el cobre y el substrato mejoraron el rendimiento de la antena, del mismo modo que el espacio ejercido por el substrato entre el plano de tierra y el parche radiante disminuyeron las pérdidas de ganancia en la antena debido a la reducción del cobre cuando se realizan estas ranuras. La antena propuesta presenta un comportamiento multibanda inmediatamente se agregan ranuras en el parche. La evaluación de substratos y estructuras son útiles para el desarrollo de antenas de microcinta integradas para sistemas de recolección de energía de radiofrecuencia.es-ES
dc.formatapplication/pdf
dc.formatapplication/zip
dc.formattext/xml
dc.formattext/html
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)en-US
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1924/2082
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1924/2084
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1924/2085
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1924/2093
dc.relation/*ref*/H. F. Bermúdez-Orozco; E. Astaiza-Hoyos; L. F. Muñoz-Sanabria, “Cambios del patrón de radiación en arreglos lineales de dipolos de microcinta a 2,4 GHz en presencia de elementos parásitos,” TecnoLógicas, vol. 18, no. 35, pp. 21-34, Aug. 2015. https://doi.org/10.22430/22565337.185
dc.relation/*ref*/J. Chen; K. Fai Tong; A. Al-Armaghany; J. Wang, “A Dual-Band Dual-Polarization Slot Patch Antenna for GPS and Wi-Fi Applications,” IEEE Antennas Wirel. Propag. Lett., vol. 15, pp. 406–409, Jun. 2015. https://doi.org/10.1109/lawp.2015.2448536
dc.relation/*ref*/H. Elsadek; D. M. Nashaat, “Multiband and UWB V-shaped antenna configuration for wireless communications applications,” IEEE Antennas Wirel. Propag. Lett., vol. 7, pp. 89–91, May. 2008. https://doi.org/10.1109/lawp.2007.900953
dc.relation/*ref*/S. Liu; W. Wu; D. Gang Fang, “Single-Feed Dual-Layer Dual-Band E-Shaped and U-Slot Patch Antenna for Wireless Communication Application,” IEEE Antennas Wirel. Propag. Lett., vol. 15, no. 2, pp. 468–471, Jul. 2015. https://doi.org/10.1109/lawp.2015.2453329
dc.relation/*ref*/M. Rostamzadeh; S. Mohamadi; J. Nourinia; Ch. Ghobadi; M. Ojaroudi, “Square monopole antenna for UWB applications with novel rod-shaped parasitic structures and novel V-shaped slots in the ground plane,” IEEE Antennas Wirel. Propag. Lett., vol. 11, pp. 446–449, Apr. 2012. https://doi.org/10.1109/lawp.2012.2193866
dc.relation/*ref*/N. M. Awad; M. K. Abdelazeez, “Multislot microstrip antenna for ultra-wide band applications,” J. King Saud Univ. Sci., vol. 30, no. 1, pp. 38–45, Jan. 2018. https://doi.org/10.1016/j.jksues.2015.12.003
dc.relation/*ref*/S. Weigand; G. H. Huff; K. H. Pan; J. T. Bernhard, “Analysis and design of broad-band single-layer rectangular U-slot microstrip patch antennas,” IEEE Trans. Antennas Propag., vol. 51, no. 3, pp. 457–468, May. 2003. https://doi.org/10.1109/tap.2003.809836
dc.relation/*ref*/M. Joler; J. Kucan, “Impact of Slot Parameters on the Three Resonant Frequencies of a Rectangular Microstrip Antenna: Study of the impact of the slot length, width, and position,” IEEE Antennas Propag. Mag., vol. 57, no. 4, pp. 48–63, Aug. 2015. https://doi.org/10.1109/map.2015.2453888
dc.relation/*ref*/S. Chhawchharia; S. Kumar Sahoo; M. Balamurugan; S. Sukchai; F. Yanine, “Investigation of wireless power transfer applications with a focus on renewable energy,” Renew. Sustain. Energy Rev., vol. 91, pp. 888–902, Aug. 2018. https://doi.org/10.1016/j.rser.2018.04.101
dc.relation/*ref*/T. Benyetho; J. Zbitou; L. El Abdellaoui; H. Bennis; A. Tribak, “A New Fractal Multiband Antenna for Wireless Power Transmission Applications,” Act. Passiv. Electron. Components, vol. 2018, pp. 1–10, Mar. 2018. https://doi.org/10.1155/2018/2084747
dc.relation/*ref*/H. Joon Kim; H. Hirayama; S. Kim; K. Jin Han; R. Zhang; J. Woong Choi, “Review of Near-Field Wireless Power and Communication for Biomedical Applications,” IEEE Access, vol. 5, pp. 21264–21285, Sep. 2017. https://doi.org/10.1109/access.2017.2757267
dc.relation/*ref*/R. Hussein; H. A. Atallah; S. Hekal; A. B. Abdel-Rahman, “A new design for compact size wireless power transfer applications using spiral defected ground structures,” Radioengineering, vol. 27, no. 4, pp. 1032–1037, 2018. https://doi.org/10.13164/re.2018.1032
dc.relation/*ref*/L. G. Tran; H. K. Cha;W. T. Park, “RF power harvesting: a review on designing methodologies and applications,” Micro Nano Syst. Lett., vol. 5, Feb. 2017. https://doi.org/10.1186/s40486-017-0051-0
dc.relation/*ref*/H. S. Deshpande; K. J. Karande, “A planar microstrip RF energy harvester 3D cube antenna for multiple frequencies reception,” in Conference on Advances in Signal Processing, CASP 2016, Pune, 2016, pp. 327–331. https://doi.org/10.1109/casp.2016.7746189
dc.relation/*ref*/T. A. Elwi, “Novel UWB printed metamaterial microstrip antenna based organic substrates for RF-energy harvesting applications,” AEU - Int. J. Electron. Commun., vol. 101, pp. 44–53, Mar. 2019. https://doi.org/10.1016/j.aeue.2019.01.026
dc.relation/*ref*/N. Shariati; W. S. T. Rowe; K. Ghorbani, “Highly sensitive rectifier for efficient RF energy harvesting,” 2014 44th European Microwave Conference, Rome, 2014, pp. 1190–1193. https://doi.org/10.1109/eumc.2014.6986654
dc.relation/*ref*/J. M. Barcak; H. P. Partal, “Efficient RF energy harvesting by using multiband microstrip antenna arrays with multistage rectifiers,” in 2012 IEEE Subthreshold Microelectronics Conference, SubVT, Waltham, 2012. https://doi.org/10.1109/subvt.2012.6404327
dc.relation/*ref*/Y. Zhou; C. Huerta; J. Hinojosa, “Three-band ambient wireless energy harvesting system,”2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, 2016, pp. 613-614. https://doi.org/10.1109/aps.2016.7696015
dc.relation/*ref*/Z. Popovic et al., “Scalable RF energy harvesting,” IEEE Trans. Microw. Theory Tech., vol. 62, no. 4, pp. 1046–1056, Feb. 2014. https://doi.org/10.1109/tmtt.2014.2300840
dc.relation/*ref*/L. L. Pon; S. K. Abdul Rahim; C. Yen Leow; M. Himdi; M. Khalily, “Displacement-tolerant printed spiral resonator with capacitive compensated-plates for non-radiative wireless energy transfer,” IEEE Access, vol. 7, pp. 10037–10044, Jan. 2019. https://doi.org/10.1109/access.2019.2891015
dc.relation/*ref*/A. Rajagopalan; A. K. Ramrakhyani; D. Schurig; G. Lazzi, “Improving power transfer efficiency of a short-range telemetry system using compact metamaterials,” IEEE Trans. Microw. Theory Tech., vol. 62, no. 4, pp. 947–955, Feb. 2014. https://doi.org/10.1109/tmtt.2014.2304927
dc.relation/*ref*/J. Zhang; X. Yuan; C. Wang; Y. He, “Comparative Analysis of Two-Coil and Three-Coil Structures for Wireless Power Transfer,” IEEE Trans. Power Electron., vol. 32, no. 1, pp. 341–352, Feb. 2016. https://doi.org/10.1109/tpel.2016.2526780
dc.relation/*ref*/M. Fantuzzi; D. Masotti; A. Costanzo, “A Novel Integrated UWB-UHF One-Port Antenna for Localization and Energy Harvesting,” IEEE Trans. Antennas Propag., vol. 63, no. 9, pp. 3839–3848, Jul. 2015. https://doi.org/10.1109/tap.2015.2452969
dc.relation/*ref*/E. Gómez Rodríguez; I. Rodríguez Prieto; F. Marante Rizo; L. Rizo Salas, “Estudio de la variación de diferentes parámetros en antenas de microcinta AAPC,” Ing. Electrónica, Automática y Comun., vol. 34, no. 1, pp. 27–39, Jan. 2013. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1815-59282013000100003
dc.relation/*ref*/M. Kumar Khandelwal; B. Kumar Kanaujia; S. Kumar, “Defected ground structure: Fundamentals, analysis, and applications in modern wireless trends,” International Journal of Antennas and Propagation, vol. 2017, Feb. 2017. https://doi.org/10.1155/2017/2018527
dc.relation/*ref*/N. Singh; B. K. Kanaujia; M. T. Beg; Mainuddin; T. Khan; S. Kumar, “A dual polarized multiband rectenna for RF energy harvesting,” AEU - Int. J. Electron. Commun., vol. 93, pp. 123–131, Sep. 2018. https://doi.org/10.1016/j.aeue.2018.06.020
dc.relation/*ref*/A. Benayad; M. Tellache, “A compact energy harvesting multiband rectenna based on metamaterial complementary split ring resonator antenna and modified hybrid junction ring rectifier,” Int. J. RF Microw. Comput. Eng., vol. 30, no. 2, pp. 1–11, Feb. 2020. https://doi.org/10.1002/mmce.22031
dc.relation/*ref*/A. E. Hidalgo; F. M. Rizo, “Microstrip antenna with metamaterial hybrid structure for 2.4 GHz,” Ingeniare, vol. 27, no. 1, pp. 22–33, Mar. 2019. https://doi.org/10.4067/s0718-33052019000100022
dc.relation/*ref*/A. A. Deshmukh; K. P. Ray, “Formulation of resonance frequencies for dual-band slotted rectangular microstrip antennas,” IEEE Antennas Propag. Mag., vol. 54, no. 4, pp. 78–97, Sep. 2012. https://doi.org/10.1109/map.2012.6309159
dc.relation/*ref*/J. Balcells; Y. Damgaci; B. A. Cetiner; J. Romeu; L. Jofre, “Polarization reconfigurable MEMS-CPW antenna for mm-wave applications,” EuCAP 2010 - 4th Eur. Conf. Antennas Propag., Barcelona, 2010. pp. 1-856. https://ieeexplore.ieee.org/abstract/document/5505012
dc.relation/*ref*/F. Sarrazin; S. Pflaum; C. Delaveaud, “Radiation Efficiency Improvement of a Balanced Miniature IFA-Inspired Circular Antenna,” IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 1309–1312, Nov. 2016. https://doi.org/10.1109/lawp.2016.2633308
dc.relation/*ref*/B. Rao Perli; A. Maheswara Rao, “Analysis of microstrip patch antenna with loading slot using characteristic modes,” 2020 7th Int. Conf. Smart Struct. Syst. ICSSS, Chennai, 2020, pp. 2–5. https://doi.org/10.1109/icsss49621.2020.9202029
dc.relation/*ref*/S. Á. Jaramillo-Flórez, “Filtros a Frecuencias de Microondas con Doble Resonador en Anillo Elípticos Confocales,” TecnoLógicas, p. 517- 528, Nov. 2013. https://doi.org/10.22430/22565337.345
dc.relation/*ref*/M. Moubadir; I. Badaoui; N. A. Touhami; M. Aghoutane; M. El Ouahabi, “A new circular polarization dual feed microstrip square patch antenna using branch coupler feeds for WLAN/HIPERLAN applications,” Procedia Manufacturing, vol. 32, pp. 702–709, 2019. https://doi.org/10.1016/j.promfg.2019.02.274
dc.relation/*ref*/C. Wnng; K.Chang, “A novel CP patch antenna with a simple feed structure,” IEEE Antennas and Propagation Society International Symposium. Transmitting Waves of Progress to the Next Millennium. 2000 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (C, Salt Lake City, 2002, pp. 1000–1003. https://doi.org/10.1109/aps.2000.875389
dc.relation/*ref*/T. Kingsuwannaphong; V. Sittakul, “Compact circularly polarized inset-fed circular microstrip antenna for 5 GHz band,” Comput. Electr. Eng., vol. 65, pp. 554–563, Jan. 2018. https://doi.org/10.1016/j.compeleceng.2017.02.027
dc.rightsCopyright (c) 2021 TecnoLógicasen-US
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0en-US
dc.sourceTecnoLógicas; Vol. 24 No. 51 (2021); e1924en-US
dc.sourceTecnoLógicas; Vol. 24 Núm. 51 (2021); e1924es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectMicrostrip antennaen-US
dc.subjectmicrostrip slotsen-US
dc.subjectradiation patternen-US
dc.subjectresonance frequencyen-US
dc.subjectAntenas de microcintaes-ES
dc.subjectranuras de microcintaes-ES
dc.subjectpatrón de radiaciónes-ES
dc.subjectfrecuencia de resonanciaes-ES
dc.titleSimulation of a Rectangular Spiral Microstrip Multiband Antenna for Radio Frequency Energy Harvesten-US
dc.titleSimulación de una antena microcinta rectangular espiral multibanda para la aplicación de captación de energía de radiofrecuenciaes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem