Mostrar el registro sencillo del ítem

dc.contributor.authorYepes, Adrianaspa
dc.contributor.authorBuckeridge, Marcos Silveiraspa
dc.date.accessioned2011-07-01 00:00:00
dc.date.accessioned2023-09-19T21:07:05Z
dc.date.available2011-07-01 00:00:00
dc.date.available2023-09-19T21:07:05Z
dc.date.issued2011-07-01
dc.identifier.issn0120-0739
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/44308
dc.description.abstractEl cambio climático global se compone de una serie de eventos meteorológicos que tienen influencia en el funcionamiento de los sistemas naturales; se manifiesta en alteraciones en la biodiversidad de los ecosistemas, en la productividad y fuentes de alimentos y por consiguiente, en la cotidianidad humana. Existe un creciente interés por entender los procesos que componen el cambio climático global y su influencia en la dinámica del ciclo de carbono en los ecosistemas naturales, ya que las plantas son fundamentales en el balance global de este metaloide, por su capacidad de absorber CO2, mediante la fotosíntesis, secuestrarlo en forma de celulosa o transformarlo en otro tipo de compuesto orgánico. Los estudios de las respuestas de plantas que se desarrollan en altas concentraciones de gas carbónico sugieren que estas condiciones pueden beneficiar el crecimiento de plantas y la productividad en algunas especies, pero se desconoce el efecto combinado de estas variables climáticas cambiantes. En esta revisión serán presentadas generalidades de la ciencia del cambio climático, algunas tecnologías aplicadas para el estudio de su efecto en las plantas y las respuestas de diferentes especies vegetales a las variables ambientales cambiantes. El desarrollo de la investigación básica nos ha permitido redimensionar la influencia de las actividades antropogénicas en el desequilibrio de los sistemas naturales. La interdisciplinariedad e investigaciones asociadas en biología molecular, bioquímica, fisiología, ecología y climatología, entre otros, lo cual permitirá contar con una perspectiva más integradora sobre estos eventos, conocimiento fundamental para establecer las líneas de acción y adaptación por parte de gobiernos y de entidades privadas implicadas en su vigilancia y preservación.spa
dc.description.abstractClimate change is composed of a succession of meteorological processes that alter the performance of the natural systems, such as productivity, food sources, biodiversity and human activities. The natural ecosystems are essential for the global equilibrium, because they contain the bulk of the terrestrial carbon. Plants are important carbon reservoirs, because of their ability to take CO2 through photosynthesis and transform it into organic compounds such as cellulose (carbon sequestration). There is a growing interest to understand the global change process and its relationship with the carbon cycle with plant dynamics. Elevated CO2 concentration in the atmosphere increases leaf photosynthesis, but it is not known whether this enhancement will be maintained over time. In the present work, we review general aspects of climate change science, and some technologies applied to the study of elevated CO2 concentrations effects in plants. Also, physiological and metabolic responses associated to global change, such as high temperature and drought will be described. The inter disciplinarity related to the research associated to molecular biology, biochemistry, physiology, ecology and climatology, to name but a few, will afford the adoption of a more integrated approach of these events. This is crucial for the establishment of future strategies of governments and private companies to face the effects of the global climate changes.eng
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypetext/htmlspa
dc.language.isospaspa
dc.publisherUniversidad Distrital Francisco José de Caldasspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistas.udistrital.edu.co/index.php/colfor/article/view/3562spa
dc.subjectclimate changeeng
dc.subjectelevated temperatureeng
dc.subjectelevated CO2eng
dc.subjectplants.eng
dc.subjectcambio climáticospa
dc.subjectelevada temperaturaspa
dc.subjectelevado CO2spa
dc.subjectplantas.spa
dc.titleRespuestas de las plantas ante los factores ambientales del cambio climático global - revisiónspa
dc.typeArtículo de revistaspa
dc.identifier.doi10.14483/udistrital.jour.colomb.for.2011.2.a06
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_dcae04bcspa
dc.type.localJournal articleeng
dc.title.translatedPlant responses to meteorological events related to climate change - revieweng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.relation.referencesAidar, M. P., C. A. Martínez, C. A. Costa, P. M. F. Costa, S. M. C. Dietrich & M. S. Buckeridge. 2002. Effect of atmospheric CO2 enrichment on the establishment of seedlings of jatobá (Hymenaea courbaril L. -Leguminosae-Caesalpinioideae). Biota Neotropica 2 (1). Version en línea: [http://www.biotaneotropica.org.br]. Fecha de consulta: 06 de febrero del 2009.spa
dc.relation.referencesAl-Khatib, K. & G. M. Paulsen. 1999. High-temperature effects on photosynthetic processes in temperate and tropical cereals. Crop Science 39: 119-125.spa
dc.relation.referencesAlbert,K. R., T. N. Mikkelsen, A. Michelsen, H. Ro-Poulsen & L. van der Linden. 2011 Interactive effects of drought, elevated CO2 and warming on photosynthetic capacity and photosystem performance in temperate heath plants. Journal of Plant Physiology 168: 1550-1561.spa
dc.relation.referencesAinsworth, E. A., P. A. Davey, C. J. Bernacchi, O. C. Dermody, E. A. Heaton, P. B. Morgan, S. l. Naidu, H-S. Yoo ra, X-G. Zhu, P.S. Curtis & S.P. Long. 2002. A meta analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield. Global Change Biology 8: 695-709.spa
dc.relation.referencesAinsworth, E. A. & S. P. Long. 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist 165: 351-372spa
dc.relation.referencesBarton, C. V. M., H. S. J. Lee & P. G. Jarvis. 1993. A branch bag and CO2 control system for long-term CO2 enrichment of mature Sitka spruce (Picea sitchensis (Bong.) Carr.). Plant, Cell and Environment 16: 1139-1148.spa
dc.relation.referencesBerry, J. & O. Björkman. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology 31: 491-543.spa
dc.relation.referencesBuchanan, B.B., W. E Gruíssem & R. Jones. 1998. Biochemistry and Molecular Biology of Plants. ASPP. 650 p.spa
dc.relation.referencesBuckeridge, M. S. & S. M. C. Dietrich. 1996. Mobilisation of the raffinose family oligosaccharides and galactomannan in germinating seeds of Sesbania marginata Benth. Plant Science 117: 33-43.spa
dc.relation.referencesBuckeridge, M. S., H. P. Santos & M. A. S. Tiné. 2000a. Mobilisation of storage cell wall polysaccharides in seeds. Plant Physiology and Biochemistry 38: 141-156.spa
dc.relation.referencesBuckeridge, M. S., M. A. S. Tiné, H. P. Santos & D. U. Lima. 2000b. Polissacarídeos de reserva de parede celular em sementes. Revista Brasileira de FisiologiaVegetal 12: 137-162.spa
dc.relation.referencesBuckeridge, M. S., S. M. C. Dietrich & D. U. Lima. 2000c. Galactomannans as the reserve carbohydrate in legume seeds, pp.: 283-316. En: Gupta, A.K. & N. Kaur (eds.). Carbohydrate reserves in plants: synthesis and regulation. Elsevier, Amsterdam.spa
dc.relation.referencesBuckeridge, M. S., H. P. Santos, M. A. Tiné & M. P. M. Aidar. 2004. Mobilização de Reservas, pp.:163-185. En: Gui Ferreira & Fabian Borgheti (eds.). Germinação. Do básico ao aplicado. Alfredo Artmed. Porto Alegre.spa
dc.relation.referencesBuckeridge, M. S., L. Mortari & M. Machado. 2007. Respostas fisiológicas de plantas às mudanças climáticas: alterações no balanço de carbono nas plantas podem afetar o ecossistema?, pp.: 1-13. En: Gizelda, M. R., R.R.B. Negrelle & L. P. C. Morellato. Fenologia: ferramenta para conservação, melhoramento e manejo de recursos vegetais arbóreos. Colombo.spa
dc.relation.referencesBuckeridge, M. S. 2008. Seqüestro de carbono, cana-de-açúcar e o efeito Cinderela. Versión en linea: [http://www.comciencia.br/comciencia/?section=8&edicao=23&id=258 .] Fecha de consulta: 10 de diciembre del 2009.spa
dc.relation.referencesBuckeridge, M. S., M. Aidar, C. Martinez & E. Silva. 2008. Respostas das plantas às mudanças climáticas, pp.: 78-91. En: Buckeridge, M. S. Biologia & as mudanças climáticas. Rima Editora. São Pablo.spa
dc.relation.referencesBudowski, G. 1965. Distribution of tropical american rain forest species in the light of successional processes. Turrialba 15: 40-42spa
dc.relation.referencesCosta, P.M. 2004. Efeitos da alta concentração de CO2 sobre o crescimento e o estabelecimento de plântulas do jatobá de mata Hymenaea courbaril l. Var. Stilbocarpa (Heyne). Universidad de Campinas. São Paulo. 88 p.spa
dc.relation.referencesCrafts-Brandner, S. J., F. J. van de Loo & M. E. Salvucci. 1997. The two forms of Ribulose-1,5Bisphosphate Carboxylase/Oxygenase Acti vase differ in sensitivity to elevated temperature. Plant Physiology 114: 439-444.spa
dc.relation.referencesCrafts-Brandner, S. J. & M. E. Salvucci. 2000. Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proceedings of the National Academy of Sciences of the United States of America 97: 13430-13435.spa
dc.relation.referencesDrake, B. G., M. A. Gonzalez-Meler & S. P. Long. 1997. More efficient plants: a consequence of rising atmospheric CO2? Annual Review of Plant Physiology and Plant Molecular Biology 48: 609-639.spa
dc.relation.referencesDruart, N., M. Rodríguez-Buey, G. Barron-Gafford, A. Sjödin, R. Bhalerao & V. Hurry. 2006. Molecular targets of elevated [CO2] in leaves and stem of Populus deltoides: implications for future tree growth and carbon sequestration. Functional Plant Biology 33: 121-131.spa
dc.relation.referencesFarquhar G. D., S. Von Caemmerer & J. A. Berry. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 78-90spa
dc.relation.referencesFarquhar, G. D. & S. Von Caemmerer. 1982. Modeling of photosynthetic response to environmental conditions, pp.: 549-587 (Vol. 12B). En: Lange, O.L., P.S. Nobel, C.B. Osmond y H. Ziegler (eds.). Physiological Plant Ecology I. Encyclopedia of Plant Physiology New Series. Springer-Verlag. Berlin.spa
dc.relation.referencesGaastra, P. 1959. Photosynthesis of crop plantas as influenced by light, carbon dioxide, temperature and stomalatl difussion resistance. Mededelingen Landbou 59: 1-68.spa
dc.relation.referencesGodoy, J. R. L. 2007. Ecofisiologia do estabelecimento de leguminosas arbóreas da Mata Atlântica, pertencentes a diferentes grupos funcionais, sob atmosfera enriquecida com CO2: uma abordagem sucessional. Informe presentado al Instituto de Botânica. São Paulo. 113 p.spa
dc.relation.referencesGodoy, O., J. P. de Lemos-Filho & F. Valladares. 2011. Invasive species can handle leaf temperature under water stress than Mediterranean natives. Environmental and Experimental Botany 71: 207-214spa
dc.relation.referencesGunderson, C. A., R. J. Norby & S. D. Wullschleger. 2000. Acclimation of photosynthesis and respiration to simulated climatic warming in northern and southern populations of Acer saccharum: laboratory and field experiments. Tree Physiology 20: 87-96.spa
dc.relation.referencesHaldimann, P. & U. Feller. 2004. Inhibition of photosynthesis by high temperature in oak (Quercus pubescens L.) leaves grown under natural conditions closely correlates with a reversible heat-dependent reduction of the activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant, Cell and Environment 27: 1169-1183.spa
dc.relation.referencesHall, A. E. 2001. Crop Responses to Environment. CRC Press LLC. Boca Raton. 232 p.spa
dc.relation.referencesHikosaka, K., K. Ishikawa, A. Borjigidai, O. Muller & Y. Onoda. 2006. Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. Journal of Experimental Botany 57: 291-302.spa
dc.relation.referencesHoughton, J. T., G. J. Jenkins & J. J. Ephraums (eds.). 1990. Climate Change: The IPCC scientific assesment. Cambridge University Press. Cambridge-New York-Melbourne. 410 pspa
dc.relation.referencesHoughton, J. T., L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg & K. Maskell (eds.). 1995. Climate Change 1995. The science of Climate Change. The IPCC scientific assesment. Cambridge University Press. Cambridge-New York-Melbourne. 588 pspa
dc.relation.referencesHoughton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. Van der Linden, X. Dai, K. Maskell, & C. A. Johnson (eds.). 2001. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Cambridge-New York. 881 p.spa
dc.relation.referencesKinsman, E. A., C. Lewis, M.S. Davies, J.E. Young, D. Francis, B. Vilhar & H.J. Ougham. 1997. Elevated CO2 stimulates cells to divide in grass meristems: a differential effect in two natural populations of Dactylis glomerata. Plant, Cell and Environment 20: 1309-1316.spa
dc.relation.referencesKörner, C., R. Asshoff, O. Bignucolo, S. Hättenschwiler, S. G. Keel, S. Peláez-Riedl, S. Pepin, R. T. W. Siegwolf & G. Zotz. 2005. Carbon Flux and Growth in Mature Deciduous Forest Trees Exposed to Elevated CO2. Science 309:1360-1362spa
dc.relation.referencesKruse, J., I. Hetzger, C. Mai, A. Polle & H. Rennenberg. 2003. Elevated CO2 affects N metabolism of young poplar plants (Populus tremolo XP. alba) differently at defi cient and sufficient N-supply. New Phytologist 157: 65-81.spa
dc.relation.referencesLake, J. A., W. P. Quick, D. J. Beerling & F. I. Woodward. 2001. Signals from mature to new leaves. Nature 411: 154-155.spa
dc.relation.referencesLake, J. A., F. I. Woodward & W. P. Quick. 2002. Long distance CO2 signaling in plants. Journal of Experimental Botany 53: 183-193.spa
dc.relation.referencesLambers, H., S. Chapin & T. Pons. 2008. Plant physiological ecology. Springer. New York. 604 p.spa
dc.relation.referencesLaw, R. & S. J. Crafts-Brandner. 1999 . Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose1,5-bisphosphate carboxylase/oxygenase. Plant Physiology 120: 173-182.spa
dc.relation.referencesLea, P. J. & R. C. Leegood. 1999. Plant Biochemistry and Molecular Biology. Chichester. Wiley. 364 p.spa
dc.relation.referencesLeakey, A. D. B., E. A. Ainsworth, C. J. Bernacchi, A. Rogers, S. Long & D. R. Ort. 2009. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. Journal of Experimental Botany 60: 2859-2876.spa
dc.relation.referencesLevitt, J. 1980. Responses of plants to environmental stresses. 2nd. edition. V 1: chilling, freezing and high temperature stresses. V 2: water stress, dehydration and drought injury. Academic Press. 607 p.spa
dc.relation.referencesLong, S. P., E. A. Ainsworth, A. Rogers & D. R. Ort. 2004. Rising atmospheric carbon dioxide: plants FACE the future. Annual Review of Plant Physiology and Plant Molecular Biology 55: 591-628.spa
dc.relation.referencesLong, S. P., E. A. Ainsworth, C. J. Bernacchi, P. A. Davey, P. B. Morgan, G. Y. Hymus, A. D. B. Leakey & C. P. Osborne. 2006. Long-term responses of photosynthesis and stomata to elevated [CO2] in managed systems, pp.: 253-270. En: Nösberger J., S.P., Long, R.J. Norby, M. Stitt, G.R. Hendrey, H. Blum (eds.). Managed Ecosystems and CO2. Case Studies, Processes and Perspectives. Springer-Verlag. Heidelberg. 455 p.spa
dc.relation.referencesLoreto, F., C. Barta, F. Brilli & I. Nogues. 2006. On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. Plant, cell and environment 29: 1820-1828.spa
dc.relation.referencesLoreto, F. & M. Centritto. 2008. Leaf carbon assimilation in a water-limited world. Plant Biosystems 142: 154-161.spa
dc.relation.referencesLovelock, C. E., K. Winter, R. Mersits & M. Popp. 1998. Responses of communities of tropical tree species to elevated CO2 in a forest clearing. Oecologia 116: 207-218.spa
dc.relation.referencesMarabesi, M. 2007. Efeito do alto CO2 no crescimento inicial e nafisiologia da fotossíntese em plântulas Senna alata (L.) Roxb. Instituto de Botânica. São Paulo. 78 p.spa
dc.relation.referencesMachado, M. 2007. Estudo bioquímico e da estrutura foliar de plântulas do jatobá da mata (Hymenaea courbaril L.) e do cerrado (Hymenaea stigonocarpa Mart.) expostas à concentração elevada de CO2. Universidad de Campinas. São Paulo 102 p.spa
dc.relation.referencesMetz, B., O. R. Davidson, H. de Coninck, M. Loos & L. Me (eds.). 2005. La captación y el almacenamiento de dióxido de carbono. Cambridge University Press. United Kingdom-New York. 57 p.spa
dc.relation.referencesMetz, B., O. R. Davidson, P. R. Bosch, R. Dave & L. A. Meyer (eds.). 2007. Contributi on of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Chang. Cambridge University Press. United Kingdom-New York. 841 p.spa
dc.relation.referencesMiglieta, F., A. Peressotti, F. P. Vaccari, A. Zaldei, P. Deangelis & G. Scarascia- Mugnozza. 2001. Free air carbon dioxide enrichment of a poplar plantation: description and performance of the POPFACE system. New Phytologist 150: 465-476.spa
dc.relation.referencesMoore, B.D., S.-H. Cheng, D.E Sims, & J. R. Seemann. 1999. The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2. Plant Cell and Environment 22: 567-589.spa
dc.relation.referencesOlivo, N., C. A. Martínez & M. A. Oliva. 2002. The photosynthetic response to elevated CO2 in high altitude potato species (Solanum curtilobum). Photosynthetica, Praha 40: 309-313.spa
dc.relation.referencesONU. 1998. Protocolo de Kyoto de la Convención Marco de las Naciones Unidas sobre el cambio climático. Naciones Unidas. 25 p.spa
dc.relation.referencesParry, M.L., O.F. Canziani, J.P. Paluti kof, P.J. van der Linden & C.E. Hanson (eds.). 2007. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Cambridge. 976 p.spa
dc.relation.referencesPhilips, O. L., Y. Malhi, N. Higuchi, W. F. Laurance, R. M. Núñez, D. J. D. Váxquez, L. V. Laurance, S. G. Ferreira, M. Stern, S. Brown & J. Grace. 1998. Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282: 439-442.spa
dc.relation.referencesPoorter, H., Y. Berkel, R. Baxter, J. Hertog, P. Dijkstra, R. M. Gifford, K. L. Griffi n, C. Roumet, J. R. & S. C. Wong. 1997. The effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C-3 species. Plant Cell and Environment 20: 472-482.spa
dc.relation.referencesPoorter, H, & M. L. Navas. 2003. Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytologist 157: 175-198.spa
dc.relation.referencesPrentice, I.C. 2001. The Carbon Cycle and Atmospheric Carbon Dioxide, pp.: 135-237. En: Houghton, J.T.,Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell & C.A. Johnson (eds.). Climate Change 2001: The Scientific Basis. Cambridge University Press. United Kingdom-New York.spa
dc.relation.referencesRanasinghe, C. & G. Taylor. 1996. Mechanism for increased leaf growth in elevated CO2. Journal of Experimental Botany 47: 349-358.spa
dc.relation.referencesRennenberg, F., A. Loreto, F. Polle, S. Brilli, R. S. Fares Beniwal & Gessler A. 2006. Physiological responses of forest trees to heat and drought. Plant Biology 8: 556-571spa
dc.relation.referencesSage, R. F. 1990. A model describing the regulation of ribulose-1,5- bisphosphate carboxylase, electron transport, and triose phosphatesse in response to light-intensity and CO2 in C3 plants. Plant Physiology 94: 1728-1734.spa
dc.relation.referencesSage, R & D. Kubien. 2007. The temperature response of C3 and C4 photosynthesis. Plant, Cell and Environment 30: 1086-1106.spa
dc.relation.referencesSalisbury, F. & F. Ross. 2000. Fisiología de las Plantas. Thompson Editores Spain Paraninfo, S. A. España. 947 p.spa
dc.relation.referencesSalvucci, M. E. & S. J. Crafts-Brandner. 2004. Mechanisms for deactivation of Rubisco under moderate heat stress. Physiologia Plantarum 122: 513-519.spa
dc.relation.referencesSampaio, G., J. Marengo & C. Nobre. 2008. A atmosfera e as Mudanças Climáticas, pp.: 5-28. En: Buckeridge, M.S. (ed.). Biologia & Mudanças Climáticas no Brasil. Rima Editora. São Carlos.spa
dc.relation.referencesSawada S., M. Kuninaka, K. Watanabe, A. Sato, H. Kawamura, K. Komine, T. Sakamoto & M. Kasai. 2001. The mechanism to suppress photosynthesis through end-product inhibition in single-rooted soybean leaves during acclimation to CO2 enrichment. Plant and Cell Physiology 42: 1093-1102.spa
dc.relation.referencesSharkey, T. D. 1985. Photosynthesis in intact leaves of C3 plants -physics, physiology and rate limitations. Botanical Review 51: 53-105.spa
dc.relation.referencesSharkey, T. D., M. Laporte, Y. Lu, S. Weise & APM. Weber. 2004. Engineering plants for elevated CO2: a relationship between starch degradation and sugar sensing. Plant Biology 6: 280-288.spa
dc.relation.referencesSharkey, T.D. & S. M. Schrader. 2006. High temperature stress, pp.: 101-129. En: Rao K.V.M., A.S. Raghavendra & K.J. Reddy (eds). Physiology and Molecular Biology of Stress Tolerance in Plants. Springer, Netherlands.spa
dc.relation.referencesSolomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor & H.L. Miller (eds.). 2007. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. United Kingdom-New York. 996 p.spa
dc.relation.referencesTaiz, L. & E. Zeiger. 2009. Fisiología Vegetal. 3a ed. Artmed. Porto alegre. 581 p.spa
dc.relation.referencesTurnbull, M. H., R. Murthy & K. L. Griffin. 2002. The relative impacts of daytime and nighttime warming on photosynthetic capacity in Populus deltoides. Plant Cell and Environment 25: 1729-1737.spa
dc.relation.referencesVon Caemmerer, S. 2000. Biochemical models of leaf photosynthesis. CSIRO, Collingwood. 167p.spa
dc.relation.referencesWalter, A, R. Feil & U. Schurr. 2002. Restriction of nyctinastic movements and application of tensile forces to leaves affects diurnal patterns of expansion growth. Functional Plant Biology 29: 1247-1258.spa
dc.relation.referencesWalter, A., M. Christ, G. Barron-Gafford, A. Grieve, R. Murthy & U. Rascher. 2005. The effect of elevated CO2 on diel leaf growth cycle, leaf carbohydrate content and canopy growth performance of Populus deltoides. Global Change Biology 11: 1207-1219.spa
dc.relation.referencesWatson, R.T., D. L. Albritton, T. Barker, I. A. Bashmakov, O. Canziani, R. Christ, U. Cubasch, O. Davidson, H. Gitay, D. Griggs, K. Halsnaes, J. Houghton, J. House, Z. Kundzewicz, M. Lal, N. Leary, C. Magadza, J. J. McCarthy, J. F. B. Mitchell, J. R. Moreira, M. Munasinghe, I. Noble, R. Pachauri, B. Pittock, M. Prather, R. G. Richels, J. B. Robinson, J. Sathaye, S. Schneider, R. Scholes, T. Stocker, N. Sundararaman, R. T. Taniguchi & D. Zhou. (eds.). 2001. Climate Change 2001: Synthesis Report. A contribution of Working Groups I, II, and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. United Kingdom-New York. 398 p.spa
dc.relation.referencesWu, Y. & D. J. Cosgrove. 2000. Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins. Journal of Experimental Botany 51: 1543-1553.spa
dc.relation.referencesWürth, M., K. Winter, & C. H. Körner. 1998. Leaf carbohydrate responses to CO2 enrichment at the top of a tropical forest. Oecología 116: 18-25spa
dc.relation.referencesYepes, A. 2010. Desenvolvimento e efeito da concentração atmosférica de CO2 e da temperatura em plantas juvenis de Hymenaea courbaril L. Universidad de São Paulo. Jatobá. 180 p.spa
dc.relation.referencesYordanov, I., S. Dilova, R. Petkova, T. Pangelova, V. Goltsev & K. H. Suess. 1986. Mechanisms of the temperature damage and acclimation of the photosynthetic apparatus. Photobiochemistry and Photobiophysics 12: 147-155.spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREVspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationvolume14spa
dc.relation.citationissue2spa
dc.relation.citationeditionNúm. 2 , Año 2011 : Julio-Diciembrespa
dc.relation.ispartofjournalColombia forestalspa
dc.identifier.eissn2256-201X
dc.identifier.urlhttps://doi.org/10.14483/udistrital.jour.colomb.for.2011.2.a06
dc.relation.citationstartpage213
dc.relation.citationendpage232
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/3562/5226
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/3562/5184
dc.type.contentTextspa
dspace.entity.typePublicationspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

https://creativecommons.org/licenses/by-nc-sa/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como https://creativecommons.org/licenses/by-nc-sa/4.0/