Mostrar el registro sencillo del ítem
Respuestas de las plantas ante los factores ambientales del cambio climático global - revisión
dc.contributor.author | Yepes, Adriana | spa |
dc.contributor.author | Buckeridge, Marcos Silveira | spa |
dc.date.accessioned | 2011-07-01 00:00:00 | |
dc.date.accessioned | 2023-09-19T21:07:05Z | |
dc.date.available | 2011-07-01 00:00:00 | |
dc.date.available | 2023-09-19T21:07:05Z | |
dc.date.issued | 2011-07-01 | |
dc.identifier.issn | 0120-0739 | |
dc.identifier.uri | http://test.repositoriodigital.com:8080/handle/123456789/44308 | |
dc.description.abstract | El cambio climático global se compone de una serie de eventos meteorológicos que tienen influencia en el funcionamiento de los sistemas naturales; se manifiesta en alteraciones en la biodiversidad de los ecosistemas, en la productividad y fuentes de alimentos y por consiguiente, en la cotidianidad humana. Existe un creciente interés por entender los procesos que componen el cambio climático global y su influencia en la dinámica del ciclo de carbono en los ecosistemas naturales, ya que las plantas son fundamentales en el balance global de este metaloide, por su capacidad de absorber CO2, mediante la fotosíntesis, secuestrarlo en forma de celulosa o transformarlo en otro tipo de compuesto orgánico. Los estudios de las respuestas de plantas que se desarrollan en altas concentraciones de gas carbónico sugieren que estas condiciones pueden beneficiar el crecimiento de plantas y la productividad en algunas especies, pero se desconoce el efecto combinado de estas variables climáticas cambiantes. En esta revisión serán presentadas generalidades de la ciencia del cambio climático, algunas tecnologías aplicadas para el estudio de su efecto en las plantas y las respuestas de diferentes especies vegetales a las variables ambientales cambiantes. El desarrollo de la investigación básica nos ha permitido redimensionar la influencia de las actividades antropogénicas en el desequilibrio de los sistemas naturales. La interdisciplinariedad e investigaciones asociadas en biología molecular, bioquímica, fisiología, ecología y climatología, entre otros, lo cual permitirá contar con una perspectiva más integradora sobre estos eventos, conocimiento fundamental para establecer las líneas de acción y adaptación por parte de gobiernos y de entidades privadas implicadas en su vigilancia y preservación. | spa |
dc.description.abstract | Climate change is composed of a succession of meteorological processes that alter the performance of the natural systems, such as productivity, food sources, biodiversity and human activities. The natural ecosystems are essential for the global equilibrium, because they contain the bulk of the terrestrial carbon. Plants are important carbon reservoirs, because of their ability to take CO2 through photosynthesis and transform it into organic compounds such as cellulose (carbon sequestration). There is a growing interest to understand the global change process and its relationship with the carbon cycle with plant dynamics. Elevated CO2 concentration in the atmosphere increases leaf photosynthesis, but it is not known whether this enhancement will be maintained over time. In the present work, we review general aspects of climate change science, and some technologies applied to the study of elevated CO2 concentrations effects in plants. Also, physiological and metabolic responses associated to global change, such as high temperature and drought will be described. The inter disciplinarity related to the research associated to molecular biology, biochemistry, physiology, ecology and climatology, to name but a few, will afford the adoption of a more integrated approach of these events. This is crucial for the establishment of future strategies of governments and private companies to face the effects of the global climate changes. | eng |
dc.format.mimetype | application/pdf | spa |
dc.format.mimetype | text/html | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Distrital Francisco José de Caldas | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.source | https://revistas.udistrital.edu.co/index.php/colfor/article/view/3562 | spa |
dc.subject | climate change | eng |
dc.subject | elevated temperature | eng |
dc.subject | elevated CO2 | eng |
dc.subject | plants. | eng |
dc.subject | cambio climático | spa |
dc.subject | elevada temperatura | spa |
dc.subject | elevado CO2 | spa |
dc.subject | plantas. | spa |
dc.title | Respuestas de las plantas ante los factores ambientales del cambio climático global - revisión | spa |
dc.type | Artículo de revista | spa |
dc.identifier.doi | 10.14483/udistrital.jour.colomb.for.2011.2.a06 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_dcae04bc | spa |
dc.type.local | Journal article | eng |
dc.title.translated | Plant responses to meteorological events related to climate change - review | eng |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.relation.references | Aidar, M. P., C. A. Martínez, C. A. Costa, P. M. F. Costa, S. M. C. Dietrich & M. S. Buckeridge. 2002. Effect of atmospheric CO2 enrichment on the establishment of seedlings of jatobá (Hymenaea courbaril L. -Leguminosae-Caesalpinioideae). Biota Neotropica 2 (1). Version en línea: [http://www.biotaneotropica.org.br]. Fecha de consulta: 06 de febrero del 2009. | spa |
dc.relation.references | Al-Khatib, K. & G. M. Paulsen. 1999. High-temperature effects on photosynthetic processes in temperate and tropical cereals. Crop Science 39: 119-125. | spa |
dc.relation.references | Albert,K. R., T. N. Mikkelsen, A. Michelsen, H. Ro-Poulsen & L. van der Linden. 2011 Interactive effects of drought, elevated CO2 and warming on photosynthetic capacity and photosystem performance in temperate heath plants. Journal of Plant Physiology 168: 1550-1561. | spa |
dc.relation.references | Ainsworth, E. A., P. A. Davey, C. J. Bernacchi, O. C. Dermody, E. A. Heaton, P. B. Morgan, S. l. Naidu, H-S. Yoo ra, X-G. Zhu, P.S. Curtis & S.P. Long. 2002. A meta analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield. Global Change Biology 8: 695-709. | spa |
dc.relation.references | Ainsworth, E. A. & S. P. Long. 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist 165: 351-372 | spa |
dc.relation.references | Barton, C. V. M., H. S. J. Lee & P. G. Jarvis. 1993. A branch bag and CO2 control system for long-term CO2 enrichment of mature Sitka spruce (Picea sitchensis (Bong.) Carr.). Plant, Cell and Environment 16: 1139-1148. | spa |
dc.relation.references | Berry, J. & O. Björkman. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology 31: 491-543. | spa |
dc.relation.references | Buchanan, B.B., W. E Gruíssem & R. Jones. 1998. Biochemistry and Molecular Biology of Plants. ASPP. 650 p. | spa |
dc.relation.references | Buckeridge, M. S. & S. M. C. Dietrich. 1996. Mobilisation of the raffinose family oligosaccharides and galactomannan in germinating seeds of Sesbania marginata Benth. Plant Science 117: 33-43. | spa |
dc.relation.references | Buckeridge, M. S., H. P. Santos & M. A. S. Tiné. 2000a. Mobilisation of storage cell wall polysaccharides in seeds. Plant Physiology and Biochemistry 38: 141-156. | spa |
dc.relation.references | Buckeridge, M. S., M. A. S. Tiné, H. P. Santos & D. U. Lima. 2000b. Polissacarídeos de reserva de parede celular em sementes. Revista Brasileira de FisiologiaVegetal 12: 137-162. | spa |
dc.relation.references | Buckeridge, M. S., S. M. C. Dietrich & D. U. Lima. 2000c. Galactomannans as the reserve carbohydrate in legume seeds, pp.: 283-316. En: Gupta, A.K. & N. Kaur (eds.). Carbohydrate reserves in plants: synthesis and regulation. Elsevier, Amsterdam. | spa |
dc.relation.references | Buckeridge, M. S., H. P. Santos, M. A. Tiné & M. P. M. Aidar. 2004. Mobilização de Reservas, pp.:163-185. En: Gui Ferreira & Fabian Borgheti (eds.). Germinação. Do básico ao aplicado. Alfredo Artmed. Porto Alegre. | spa |
dc.relation.references | Buckeridge, M. S., L. Mortari & M. Machado. 2007. Respostas fisiológicas de plantas às mudanças climáticas: alterações no balanço de carbono nas plantas podem afetar o ecossistema?, pp.: 1-13. En: Gizelda, M. R., R.R.B. Negrelle & L. P. C. Morellato. Fenologia: ferramenta para conservação, melhoramento e manejo de recursos vegetais arbóreos. Colombo. | spa |
dc.relation.references | Buckeridge, M. S. 2008. Seqüestro de carbono, cana-de-açúcar e o efeito Cinderela. Versión en linea: [http://www.comciencia.br/comciencia/?section=8&edicao=23&id=258 .] Fecha de consulta: 10 de diciembre del 2009. | spa |
dc.relation.references | Buckeridge, M. S., M. Aidar, C. Martinez & E. Silva. 2008. Respostas das plantas às mudanças climáticas, pp.: 78-91. En: Buckeridge, M. S. Biologia & as mudanças climáticas. Rima Editora. São Pablo. | spa |
dc.relation.references | Budowski, G. 1965. Distribution of tropical american rain forest species in the light of successional processes. Turrialba 15: 40-42 | spa |
dc.relation.references | Costa, P.M. 2004. Efeitos da alta concentração de CO2 sobre o crescimento e o estabelecimento de plântulas do jatobá de mata Hymenaea courbaril l. Var. Stilbocarpa (Heyne). Universidad de Campinas. São Paulo. 88 p. | spa |
dc.relation.references | Crafts-Brandner, S. J., F. J. van de Loo & M. E. Salvucci. 1997. The two forms of Ribulose-1,5Bisphosphate Carboxylase/Oxygenase Acti vase differ in sensitivity to elevated temperature. Plant Physiology 114: 439-444. | spa |
dc.relation.references | Crafts-Brandner, S. J. & M. E. Salvucci. 2000. Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proceedings of the National Academy of Sciences of the United States of America 97: 13430-13435. | spa |
dc.relation.references | Drake, B. G., M. A. Gonzalez-Meler & S. P. Long. 1997. More efficient plants: a consequence of rising atmospheric CO2? Annual Review of Plant Physiology and Plant Molecular Biology 48: 609-639. | spa |
dc.relation.references | Druart, N., M. Rodríguez-Buey, G. Barron-Gafford, A. Sjödin, R. Bhalerao & V. Hurry. 2006. Molecular targets of elevated [CO2] in leaves and stem of Populus deltoides: implications for future tree growth and carbon sequestration. Functional Plant Biology 33: 121-131. | spa |
dc.relation.references | Farquhar G. D., S. Von Caemmerer & J. A. Berry. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 78-90 | spa |
dc.relation.references | Farquhar, G. D. & S. Von Caemmerer. 1982. Modeling of photosynthetic response to environmental conditions, pp.: 549-587 (Vol. 12B). En: Lange, O.L., P.S. Nobel, C.B. Osmond y H. Ziegler (eds.). Physiological Plant Ecology I. Encyclopedia of Plant Physiology New Series. Springer-Verlag. Berlin. | spa |
dc.relation.references | Gaastra, P. 1959. Photosynthesis of crop plantas as influenced by light, carbon dioxide, temperature and stomalatl difussion resistance. Mededelingen Landbou 59: 1-68. | spa |
dc.relation.references | Godoy, J. R. L. 2007. Ecofisiologia do estabelecimento de leguminosas arbóreas da Mata Atlântica, pertencentes a diferentes grupos funcionais, sob atmosfera enriquecida com CO2: uma abordagem sucessional. Informe presentado al Instituto de Botânica. São Paulo. 113 p. | spa |
dc.relation.references | Godoy, O., J. P. de Lemos-Filho & F. Valladares. 2011. Invasive species can handle leaf temperature under water stress than Mediterranean natives. Environmental and Experimental Botany 71: 207-214 | spa |
dc.relation.references | Gunderson, C. A., R. J. Norby & S. D. Wullschleger. 2000. Acclimation of photosynthesis and respiration to simulated climatic warming in northern and southern populations of Acer saccharum: laboratory and field experiments. Tree Physiology 20: 87-96. | spa |
dc.relation.references | Haldimann, P. & U. Feller. 2004. Inhibition of photosynthesis by high temperature in oak (Quercus pubescens L.) leaves grown under natural conditions closely correlates with a reversible heat-dependent reduction of the activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant, Cell and Environment 27: 1169-1183. | spa |
dc.relation.references | Hall, A. E. 2001. Crop Responses to Environment. CRC Press LLC. Boca Raton. 232 p. | spa |
dc.relation.references | Hikosaka, K., K. Ishikawa, A. Borjigidai, O. Muller & Y. Onoda. 2006. Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. Journal of Experimental Botany 57: 291-302. | spa |
dc.relation.references | Houghton, J. T., G. J. Jenkins & J. J. Ephraums (eds.). 1990. Climate Change: The IPCC scientific assesment. Cambridge University Press. Cambridge-New York-Melbourne. 410 p | spa |
dc.relation.references | Houghton, J. T., L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg & K. Maskell (eds.). 1995. Climate Change 1995. The science of Climate Change. The IPCC scientific assesment. Cambridge University Press. Cambridge-New York-Melbourne. 588 p | spa |
dc.relation.references | Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. Van der Linden, X. Dai, K. Maskell, & C. A. Johnson (eds.). 2001. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Cambridge-New York. 881 p. | spa |
dc.relation.references | Kinsman, E. A., C. Lewis, M.S. Davies, J.E. Young, D. Francis, B. Vilhar & H.J. Ougham. 1997. Elevated CO2 stimulates cells to divide in grass meristems: a differential effect in two natural populations of Dactylis glomerata. Plant, Cell and Environment 20: 1309-1316. | spa |
dc.relation.references | Körner, C., R. Asshoff, O. Bignucolo, S. Hättenschwiler, S. G. Keel, S. Peláez-Riedl, S. Pepin, R. T. W. Siegwolf & G. Zotz. 2005. Carbon Flux and Growth in Mature Deciduous Forest Trees Exposed to Elevated CO2. Science 309:1360-1362 | spa |
dc.relation.references | Kruse, J., I. Hetzger, C. Mai, A. Polle & H. Rennenberg. 2003. Elevated CO2 affects N metabolism of young poplar plants (Populus tremolo XP. alba) differently at defi cient and sufficient N-supply. New Phytologist 157: 65-81. | spa |
dc.relation.references | Lake, J. A., W. P. Quick, D. J. Beerling & F. I. Woodward. 2001. Signals from mature to new leaves. Nature 411: 154-155. | spa |
dc.relation.references | Lake, J. A., F. I. Woodward & W. P. Quick. 2002. Long distance CO2 signaling in plants. Journal of Experimental Botany 53: 183-193. | spa |
dc.relation.references | Lambers, H., S. Chapin & T. Pons. 2008. Plant physiological ecology. Springer. New York. 604 p. | spa |
dc.relation.references | Law, R. & S. J. Crafts-Brandner. 1999 . Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose1,5-bisphosphate carboxylase/oxygenase. Plant Physiology 120: 173-182. | spa |
dc.relation.references | Lea, P. J. & R. C. Leegood. 1999. Plant Biochemistry and Molecular Biology. Chichester. Wiley. 364 p. | spa |
dc.relation.references | Leakey, A. D. B., E. A. Ainsworth, C. J. Bernacchi, A. Rogers, S. Long & D. R. Ort. 2009. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. Journal of Experimental Botany 60: 2859-2876. | spa |
dc.relation.references | Levitt, J. 1980. Responses of plants to environmental stresses. 2nd. edition. V 1: chilling, freezing and high temperature stresses. V 2: water stress, dehydration and drought injury. Academic Press. 607 p. | spa |
dc.relation.references | Long, S. P., E. A. Ainsworth, A. Rogers & D. R. Ort. 2004. Rising atmospheric carbon dioxide: plants FACE the future. Annual Review of Plant Physiology and Plant Molecular Biology 55: 591-628. | spa |
dc.relation.references | Long, S. P., E. A. Ainsworth, C. J. Bernacchi, P. A. Davey, P. B. Morgan, G. Y. Hymus, A. D. B. Leakey & C. P. Osborne. 2006. Long-term responses of photosynthesis and stomata to elevated [CO2] in managed systems, pp.: 253-270. En: Nösberger J., S.P., Long, R.J. Norby, M. Stitt, G.R. Hendrey, H. Blum (eds.). Managed Ecosystems and CO2. Case Studies, Processes and Perspectives. Springer-Verlag. Heidelberg. 455 p. | spa |
dc.relation.references | Loreto, F., C. Barta, F. Brilli & I. Nogues. 2006. On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. Plant, cell and environment 29: 1820-1828. | spa |
dc.relation.references | Loreto, F. & M. Centritto. 2008. Leaf carbon assimilation in a water-limited world. Plant Biosystems 142: 154-161. | spa |
dc.relation.references | Lovelock, C. E., K. Winter, R. Mersits & M. Popp. 1998. Responses of communities of tropical tree species to elevated CO2 in a forest clearing. Oecologia 116: 207-218. | spa |
dc.relation.references | Marabesi, M. 2007. Efeito do alto CO2 no crescimento inicial e nafisiologia da fotossíntese em plântulas Senna alata (L.) Roxb. Instituto de Botânica. São Paulo. 78 p. | spa |
dc.relation.references | Machado, M. 2007. Estudo bioquímico e da estrutura foliar de plântulas do jatobá da mata (Hymenaea courbaril L.) e do cerrado (Hymenaea stigonocarpa Mart.) expostas à concentração elevada de CO2. Universidad de Campinas. São Paulo 102 p. | spa |
dc.relation.references | Metz, B., O. R. Davidson, H. de Coninck, M. Loos & L. Me (eds.). 2005. La captación y el almacenamiento de dióxido de carbono. Cambridge University Press. United Kingdom-New York. 57 p. | spa |
dc.relation.references | Metz, B., O. R. Davidson, P. R. Bosch, R. Dave & L. A. Meyer (eds.). 2007. Contributi on of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Chang. Cambridge University Press. United Kingdom-New York. 841 p. | spa |
dc.relation.references | Miglieta, F., A. Peressotti, F. P. Vaccari, A. Zaldei, P. Deangelis & G. Scarascia- Mugnozza. 2001. Free air carbon dioxide enrichment of a poplar plantation: description and performance of the POPFACE system. New Phytologist 150: 465-476. | spa |
dc.relation.references | Moore, B.D., S.-H. Cheng, D.E Sims, & J. R. Seemann. 1999. The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2. Plant Cell and Environment 22: 567-589. | spa |
dc.relation.references | Olivo, N., C. A. Martínez & M. A. Oliva. 2002. The photosynthetic response to elevated CO2 in high altitude potato species (Solanum curtilobum). Photosynthetica, Praha 40: 309-313. | spa |
dc.relation.references | ONU. 1998. Protocolo de Kyoto de la Convención Marco de las Naciones Unidas sobre el cambio climático. Naciones Unidas. 25 p. | spa |
dc.relation.references | Parry, M.L., O.F. Canziani, J.P. Paluti kof, P.J. van der Linden & C.E. Hanson (eds.). 2007. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Cambridge. 976 p. | spa |
dc.relation.references | Philips, O. L., Y. Malhi, N. Higuchi, W. F. Laurance, R. M. Núñez, D. J. D. Váxquez, L. V. Laurance, S. G. Ferreira, M. Stern, S. Brown & J. Grace. 1998. Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282: 439-442. | spa |
dc.relation.references | Poorter, H., Y. Berkel, R. Baxter, J. Hertog, P. Dijkstra, R. M. Gifford, K. L. Griffi n, C. Roumet, J. R. & S. C. Wong. 1997. The effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C-3 species. Plant Cell and Environment 20: 472-482. | spa |
dc.relation.references | Poorter, H, & M. L. Navas. 2003. Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytologist 157: 175-198. | spa |
dc.relation.references | Prentice, I.C. 2001. The Carbon Cycle and Atmospheric Carbon Dioxide, pp.: 135-237. En: Houghton, J.T.,Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell & C.A. Johnson (eds.). Climate Change 2001: The Scientific Basis. Cambridge University Press. United Kingdom-New York. | spa |
dc.relation.references | Ranasinghe, C. & G. Taylor. 1996. Mechanism for increased leaf growth in elevated CO2. Journal of Experimental Botany 47: 349-358. | spa |
dc.relation.references | Rennenberg, F., A. Loreto, F. Polle, S. Brilli, R. S. Fares Beniwal & Gessler A. 2006. Physiological responses of forest trees to heat and drought. Plant Biology 8: 556-571 | spa |
dc.relation.references | Sage, R. F. 1990. A model describing the regulation of ribulose-1,5- bisphosphate carboxylase, electron transport, and triose phosphatesse in response to light-intensity and CO2 in C3 plants. Plant Physiology 94: 1728-1734. | spa |
dc.relation.references | Sage, R & D. Kubien. 2007. The temperature response of C3 and C4 photosynthesis. Plant, Cell and Environment 30: 1086-1106. | spa |
dc.relation.references | Salisbury, F. & F. Ross. 2000. Fisiología de las Plantas. Thompson Editores Spain Paraninfo, S. A. España. 947 p. | spa |
dc.relation.references | Salvucci, M. E. & S. J. Crafts-Brandner. 2004. Mechanisms for deactivation of Rubisco under moderate heat stress. Physiologia Plantarum 122: 513-519. | spa |
dc.relation.references | Sampaio, G., J. Marengo & C. Nobre. 2008. A atmosfera e as Mudanças Climáticas, pp.: 5-28. En: Buckeridge, M.S. (ed.). Biologia & Mudanças Climáticas no Brasil. Rima Editora. São Carlos. | spa |
dc.relation.references | Sawada S., M. Kuninaka, K. Watanabe, A. Sato, H. Kawamura, K. Komine, T. Sakamoto & M. Kasai. 2001. The mechanism to suppress photosynthesis through end-product inhibition in single-rooted soybean leaves during acclimation to CO2 enrichment. Plant and Cell Physiology 42: 1093-1102. | spa |
dc.relation.references | Sharkey, T. D. 1985. Photosynthesis in intact leaves of C3 plants -physics, physiology and rate limitations. Botanical Review 51: 53-105. | spa |
dc.relation.references | Sharkey, T. D., M. Laporte, Y. Lu, S. Weise & APM. Weber. 2004. Engineering plants for elevated CO2: a relationship between starch degradation and sugar sensing. Plant Biology 6: 280-288. | spa |
dc.relation.references | Sharkey, T.D. & S. M. Schrader. 2006. High temperature stress, pp.: 101-129. En: Rao K.V.M., A.S. Raghavendra & K.J. Reddy (eds). Physiology and Molecular Biology of Stress Tolerance in Plants. Springer, Netherlands. | spa |
dc.relation.references | Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor & H.L. Miller (eds.). 2007. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. United Kingdom-New York. 996 p. | spa |
dc.relation.references | Taiz, L. & E. Zeiger. 2009. Fisiología Vegetal. 3a ed. Artmed. Porto alegre. 581 p. | spa |
dc.relation.references | Turnbull, M. H., R. Murthy & K. L. Griffin. 2002. The relative impacts of daytime and nighttime warming on photosynthetic capacity in Populus deltoides. Plant Cell and Environment 25: 1729-1737. | spa |
dc.relation.references | Von Caemmerer, S. 2000. Biochemical models of leaf photosynthesis. CSIRO, Collingwood. 167p. | spa |
dc.relation.references | Walter, A, R. Feil & U. Schurr. 2002. Restriction of nyctinastic movements and application of tensile forces to leaves affects diurnal patterns of expansion growth. Functional Plant Biology 29: 1247-1258. | spa |
dc.relation.references | Walter, A., M. Christ, G. Barron-Gafford, A. Grieve, R. Murthy & U. Rascher. 2005. The effect of elevated CO2 on diel leaf growth cycle, leaf carbohydrate content and canopy growth performance of Populus deltoides. Global Change Biology 11: 1207-1219. | spa |
dc.relation.references | Watson, R.T., D. L. Albritton, T. Barker, I. A. Bashmakov, O. Canziani, R. Christ, U. Cubasch, O. Davidson, H. Gitay, D. Griggs, K. Halsnaes, J. Houghton, J. House, Z. Kundzewicz, M. Lal, N. Leary, C. Magadza, J. J. McCarthy, J. F. B. Mitchell, J. R. Moreira, M. Munasinghe, I. Noble, R. Pachauri, B. Pittock, M. Prather, R. G. Richels, J. B. Robinson, J. Sathaye, S. Schneider, R. Scholes, T. Stocker, N. Sundararaman, R. T. Taniguchi & D. Zhou. (eds.). 2001. Climate Change 2001: Synthesis Report. A contribution of Working Groups I, II, and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. United Kingdom-New York. 398 p. | spa |
dc.relation.references | Wu, Y. & D. J. Cosgrove. 2000. Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins. Journal of Experimental Botany 51: 1543-1553. | spa |
dc.relation.references | Würth, M., K. Winter, & C. H. Körner. 1998. Leaf carbohydrate responses to CO2 enrichment at the top of a tropical forest. Oecología 116: 18-25 | spa |
dc.relation.references | Yepes, A. 2010. Desenvolvimento e efeito da concentração atmosférica de CO2 e da temperatura em plantas juvenis de Hymenaea courbaril L. Universidad de São Paulo. Jatobá. 180 p. | spa |
dc.relation.references | Yordanov, I., S. Dilova, R. Petkova, T. Pangelova, V. Goltsev & K. H. Suess. 1986. Mechanisms of the temperature damage and acclimation of the photosynthetic apparatus. Photobiochemistry and Photobiophysics 12: 147-155. | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ARTREV | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.relation.citationvolume | 14 | spa |
dc.relation.citationissue | 2 | spa |
dc.relation.citationedition | Núm. 2 , Año 2011 : Julio-Diciembre | spa |
dc.relation.ispartofjournal | Colombia forestal | spa |
dc.identifier.eissn | 2256-201X | |
dc.identifier.url | https://doi.org/10.14483/udistrital.jour.colomb.for.2011.2.a06 | |
dc.relation.citationstartpage | 213 | |
dc.relation.citationendpage | 232 | |
dc.relation.bitstream | https://revistas.udistrital.edu.co/index.php/colfor/article/download/3562/5226 | |
dc.relation.bitstream | https://revistas.udistrital.edu.co/index.php/colfor/article/download/3562/5184 | |
dc.type.content | Text | spa |
dspace.entity.type | Publication | spa |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Distrital tst 1 [372]