Mostrar el registro sencillo del ítem

dc.contributor.authorRestrepo, Héctor Ivánspa
dc.contributor.authorOrrego, Sergio Alonsospa
dc.contributor.authorGaleano, Oscar Javierspa
dc.date.accessioned2012-07-01 00:00:00
dc.date.accessioned2023-09-19T21:07:06Z
dc.date.available2012-07-01 00:00:00
dc.date.available2023-09-19T21:07:06Z
dc.date.issued2012-07-01
dc.identifier.issn0120-0739
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/44311
dc.description.abstractLos bosques tropicales de montaña son considerados como los ecosistemas más biodiversos del mundo. Sin embargo, están siendo seriamente amenazados por la deforestación, la degradación y el cambio climático. Adicionalmente, su conservación también está en riesgo debido a que se conoce muy poco de su ecología. El objetivo de la presente investigación fue estudiar la estructura de fragmentos de bosque en el norte de Antioquia, para esto se establecieron cuatro parcelas permanentes en dos estados sucesionales; bosques secundarios y rastrojos. Para cada cobertura se analizó su distribución diamétrica por medio de modelos no lineales tipo Hugershoff. Asimismo, se estimó la biomasa aérea y subterránea de árboles y la biomasa aérea de lianas, así como la necromasa contenida en árboles muertos en pie. Todas las distribuciones diamétricas encontradas fueron en forma de J invertida. Además, los modelos estimados explicaron satisfactoriamente el comportamiento de la estructura de los dos estados sucesionales analizados. La biomasa aérea y subterránea para los bosques secundarios fueron 91.6 y 76.3 t ha-1, respectivamente, mientras que para los rastrojos fueron 5.5 y 14.4 t ha-1. Por otra parte, la necromasa de bosques correspondiente a los árboles muertos en pie se estimó en 2.2 t ha-1.spa
dc.description.abstractTropical montane forests have the highest biodiversity in the world. However, they are being seriously threatened by deforestation, degradation and climate change. Their conservation is also at risk because we know little about their ecology. We established four permanent plots at two successional stages: secondary forest and cultivated areas. Distribution by diameter was analyzed using Hugershoff non-linear models. We estimated biomass of trees above and below-ground along with liana, under bush, understory and epiphyte biomass. In addition we measured necromass of standing dead trees, litter from wood and litterfall. We estimated total carbon in living and dead organic matter and in the soil. All the diametric distributions were of a J-inverted shape. The Hugershoff models successfully explained the behavior of the secondary forest and shrub structure. The biomass, necromass and total carbon were estimated at 185.7 and 29.8 t ha-1, 9.2 and 3.8 t ha-1 and 151.7 and 78.2 t ha-1 respectively for forests and cultivated areas. An interesting finding is the high biomass of trees below-ground, lianas and epiphytes in tropical montane forest. Tropical montane forests provide important environmental services and therefore we have to search for better ways to conserve them.eng
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypetext/htmlspa
dc.language.isospaspa
dc.publisherUniversidad Distrital Francisco José de Caldasspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistas.udistrital.edu.co/index.php/colfor/article/view/3608spa
dc.subjectárboles muertos en piespa
dc.subjectbiomasa aéreaspa
dc.subjectbiomasa de lianasspa
dc.subjectbiomasa subterráneaspa
dc.subjectdistribuciones diamétricasspa
dc.subjectmodelo Hugershoff.spa
dc.subjectstanding dead treeeng
dc.subjectabove-ground biomasseng
dc.subjectliana biomasseng
dc.subjectbelow-ground biomasseng
dc.subjectdiametric distributioneng
dc.subjectHugershoff model.eng
dc.titleESTRUCTURA DE BOSQUES SECUNDARIOS Y RASTROJOS MONTANO BAJOS DEL NORTE DE ANTIOQUIA, COLOMBIAspa
dc.typeArtículo de revistaspa
dc.identifier.doi10.14483/udistrital.jour.colomb.for.2012.2.a03
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.localJournal articleeng
dc.title.translatedStructure on lower montane secondary forests and shrublands in northern Antioquia, Colombiaeng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.relation.referencesAchard, F., Eva, H., Stibig, H-J., Mayaux, P., Gallego, J., Richards, T., & Malingreau, J-P. (2002). Determinations of deforestaion rates of the world’s humid tropical forest. Science, 297, 999-1002.spa
dc.relation.referencesAiba, S.-i., Kitayama, K., & Takyu, M. (2004). Habitat associations with topography and canopy structure of tree species in a tropical montane forest on Mount Kinabalu, Borneo. Plant Ecology, 174, 147-161.spa
dc.relation.referencesAkindele, O.S., & Onyekwelu, J.C. (2011). Review: Silviculture in Secundary Forest. En: S. Günter, M. Weber, B. Stimm & R. Mosandl (eds.). Silviculture in the tropics (pp. 351-368.). Muenchen: Springer.spa
dc.relation.referencesÁlvarez-Yépiz, J.C., Martínez-Yrízar, A., Búrquez, A., & Lindquist, C. (2008). Variation in vegetation structure and soil properties related to land use history of old-growth and secondary tropical dry forests in northwestern Mexico. Forest Ecology and Management, 256, 355-366.spa
dc.relation.referencesÁlvarez, E., Duque, A., Saldarriaga, J., Cabrera, K., de las Salas, G., del Valle, J.I., Lema, A., Moreno, F., Orrego, S.A., & Rodríguez, L. (2012). Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. Forest Ecology and Management, 267, 297-308.spa
dc.relation.referencesAlves, L.F., Vieira, S.A., Scaranello, M.A., Camargo, P.B., Santos, F., Joly, C., & Martinelli, L.A. (2010). Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). Forest Ecology and Management, 260, 679-691.spa
dc.relation.referencesAriza, W., Toro, J.L., & Lores, A. (2009). Análisis florístico y estructural de los bosques premontanos en el municipio de Amalfi (Antioquia, Colombia). Colombia Forestal, 12, 81-102.spa
dc.relation.referencesArmenteras, D., Gast, F., & Villareal, H. (2003). Andean forest fragmentation and the representativeness of protected natural areas in the eastern Andes, Colombia. Biological Conservation, 113, 245-256.spa
dc.relation.referencesArmenteras, D., Rodríguez, N., Retana, J., & Morales, M. (2011). Understanding deforestation in montane and lowland forests of the Colombian Andes. Regional Environmental Change, 11, 693-705.spa
dc.relation.referencesBolivar, J., Buitrago, M.F., & Cuartas, L.F. (2006). Ecuaciones de conicidad, volumen y biomasa para bosques de zonas altas del valle de San Nicolás, Colombia (Informe de campamento Ingeniería Forestal). Medellin: Universidad Nacional de Colombia. 45 p.spa
dc.relation.referencesBrown, S. (1997). Estimating biomass and biomass change of tropical forest: a primer. FAO Forestry Paper 134. Roma: FAO. Recuperado de http://www.fao.org/docrpe/w4095E00.htm.spa
dc.relation.referencesBrown, S. & Lugo, A.E. (1990). Tropical secondary forests. Journal of Tropical Ecology, 6, 1-32.spa
dc.relation.referencesBush, M.B., Hanselman, J.A., & Hooghiemstra, H. (2011). Andean montane forest and climate change. En: M.B. Bush, J.R. Flenley & W. Gosling (eds.). Tropical rainforest responses to climatic change (pp. 35-60). Milton Keynes: Springer.spa
dc.relation.referencesCanavos, G. (1988). Probabilidad y estadística: Aplicaciones y métodos. Mexico: McGraw Hill. 651 p.spa
dc.relation.referencesChacón, P., Leblanc, H.A., & Russo, R.O. (2007). Fijación de carbono en un bosque secundario de la región tropical húmeda de Costa Rica. Tierra Tropical, 3, 1-11.spa
dc.relation.referencesChazdon, R.L., Peres, C.A., Dent, D., Sheil, D., Lugo, A.E., Lamb, D., Storck, N.E., & Miller, S.E. (2009). The potential for species conservation in tropical secondary forest. Conservation Biology, 23, 1406-1417.spa
dc.relation.referencesChokkalingam, U., de Jong, W., Smith, J., & Sabogal, C. (2001). Secondary forest in Asia: Their diversity, importance, and role in future environmental management. Journal of Tropical Forest Science, 13(4), 5-20.spa
dc.relation.referencesClark, D.B., & Clark, D.A. (2000). Landscape-scale variation in forest structure and biomass in a tropical rain forest. Forest Ecology and Management, 137, 185-198.spa
dc.relation.referencesCook, E., Briffa, K., Shiyatov, S., Mazepa, V., & Jones, P.D. (1992). Data analysis. En: E. Cook & L. Kairiukstis (eds.). Methods of dendrochronology: applications in the environmental sciences (pp. 97-162). Dordrecht: Kluwer Academic Publishers.spa
dc.relation.referencesCrausbay, S.D., & Hotchkiss, S.C. (2010). Strong relationships between vegetation and two perpendicular climate gradients high on a tropical mountain in Hawai’i. Journal of Biogeography, 37, 1160-1174.spa
dc.relation.referencesCrawley, M. (2007). The R book. Mississauga: John Wiley & Sons, Ltd. 951 p.spa
dc.relation.referencesCulmsee, H., Leuschner, C., Moser, G., & Pitopang, R. (2010). Forest aboverground biomass along and elevational transect in Sulaweski, Indonesia, and the role of Fagaceae in tropical montane rain forest. Journal of Biogeography, 37, 960-974.spa
dc.relation.referencesCummings, D.L., Kauffman, J.B., Perry, D.A., & Hughes, R.F. (2002). Aboverground biomass and structure of rainforests in the southwestern Brazilian Amazon. Forest Ecology and Management, 163, 293-307.spa
dc.relation.referencesDaumenge, C., Gilmor, D., Ruíz Pérez, M., & Blockhus, J. (1995). Tropical montane cloud forest: Conservation status and management issues. En: L.S. Hamilton, J.O. Juvik & F.N. Scatena (eds.). Tropical montane cluod forest. Proceedings of an international symposium on ecological studies (pp. 24-37). New York: Springer-Verlag.spa
dc.relation.referencesde las Salas, G. (2002). Los bosques secundarios de América tropical: prespectivas para su manejo sostenible. Bois et Forêts des Tropiques, 272, 63-73.spa
dc.relation.referencesdel Valle, J.I., Restrepo, H.I., Londoño, M.M. (2011). Recuperación de la biomasa mendiante la sucesión secundaria, Cordillera Central de los Andes, Colombia. Revista de Biología Tropical, 59, 1337-1358.spa
dc.relation.referencesFehse, J., Hofstede, R., Aguirre, N., Paladines, C., Kooijman, A., & Sevink, J. (2002). High altitude tropical secondary forest: a competitive carbon sink?. Forest Ecology and Management, 163, 9-25.spa
dc.relation.referencesFukushima, M., Kanzaki, M., & Hara, T. (2008). Secondary forest succession after the cessation of swidden cultivation in the montane forest area in Northern Thailand. Forest Ecology and Management, 255, 1994-2006.spa
dc.relation.referencesGehring, C., Park, S., & Denich, M. (2004). Liana allometric biomass equations for Amazonian primary and secundary forest. Forest Ecology and Management, 195, 69-83.spa
dc.relation.referencesGerwing, J.J., & Farias, D.L. (2000). Integrating liana abundance and forest stature into an estimate of total aboverground biomass for an eastern Amazonian forest. Journal of Tropical Ecology, 16, 327-335.spa
dc.relation.referencesGirardin, C.A., Malhi, Y., Aragão, L.E., Mamani, M., Huaraca, W., Durand, L., Feeley, K.J., Rapp, J., Silva-Espejo, J.E., Silmans, M., Salinas, N., & Whittaker, R.J. (2010). Net primary productivity allocation an cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Global Change Biology, 16, 3176-3192.spa
dc.relation.referencesGradstein, S.R. (2008). Epiphytes of tropical montane forest-impact of deforastion and climate change. En: S.R. Grandstein, J. Homeier & D. Gansert (eds.). The tropical montane forest. Patterns and processes in a biodiversity hotspot (pp. 51-66). Göttingen: Göttingen Centre for Biodiversity and Ecology, Universitätsverlag Göttingen.spa
dc.relation.referencesGuariguata, M.R., & Ostertag, R. (2001). Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecology and Management, 148, 185-206.spa
dc.relation.referencesHegarty, E.E., & Caballe, G. (1991). Distribution and abundance of vines in forest communities. En: F.E. Putz & H.A. Mooney (eds.). The biology of vines (pp. 263-282). Cambridge: Cambridge University Press.spa
dc.relation.referencesHering, K.G. (2003). A scientific formulation of tropical forest management. Ecological Modelling, 166, 211-238.spa
dc.relation.referencesHiroaki, I., & McDowell, N. (2002). Age-related development of crown structure in coastal Douglas-fir trees. Forest Ecology and Management, 169, 257-270.spa
dc.relation.referencesHölscher, D. (2008). Hydrology of natural and anthropogenically altered tropical montane rainforests with special reference to rainfall interception. En: S.R. Grandstein, J. Homeier & D. Gansert (eds.). The tropical montane forest. Patterns and processes in a biodiversity hotspot (pp. 129-138). Göttingen: Göttingen Centre for Biodiversity and Ecology, Universitätsverlag Göttingen.spa
dc.relation.referencesHomeier, J. (2008). The influence of topography on forest structure and regeneration dynamics in an Ecuadorian montane forest. En: S.R. Grandstein, J. Homeier & D. Gansert (eds.). The tropical montane forest. Patterns and processes in a biodiversity hotspot (pp. 97-108). Göttingen: Göttingen Centre for Biodiversity and Ecology, Universitätsverlag Göttingen.spa
dc.relation.referencesHsu, C.C., Horng, F.W., & Kuo, C.M. (2002). Epiphyte biomass and nutrient capital of a moist subtropical forest in north-eastern Taiwan. Journal of Tropical Ecology, 18, 659-670.spa
dc.relation.referencesKangas, A. (2006). Mensurational aspects. En: A. Kanagas & M. Maltamo (eds.). Forest Inventory: Methodology and Applications (pp. 53-64). Dordrecht: Springer.spa
dc.relation.referencesKessler, M. & Kluge, J. (2008). Diversity and endemism in tropical montane forest - from patterns to process. En: S.R. Grandstein, J. Homeier & D. Gansert (eds.). The tropical montane forest. Patterns and processes in a biodiversity hotspot (pp. 35-50). Göttingen: Göttingen Centre for Biodiversity and Ecology, Universitätsverlag Göttingen.spa
dc.relation.referencesLamprecht, H. (1990). Silvicultura en los trópicos. Los ecosistemas forestales en los bosques tropicales y sus especies arbóreas. Posiblidades y métodos para un aprovechamiento sostenido. Eschborn: GTZ (GMBH). 335 p.spa
dc.relation.referencesLeuschner, C., Moser, G., Bertsch, C., Röderstein, M., & Hertel, D. (2007). Large altitudinal increase in tree root/shoot ratio in tropical mountain forest of Ecuador. Basic and Applied Ecology, 8, 219-230.spa
dc.relation.referencesLeuschner, C., & Moser, G. (2008). Carbon allocation and productivity in tropical mountain forests. En: S.R. Grandstein, J. Homeier & D. Gansert (eds.). The tropical montane forest. Patterns and processes in a biodiversity hotspot (pp. 109-128). Göttingen Centre for Biodiversity and Ecology, Universitätsverlag Göttingen.spa
dc.relation.referencesMittermeier, R.A., Turner, W.R., Larsen, F.W., Brooks, T.M., & Gascon, C. (2011). Global biodiversity conservation: the critical role of hotspots. En: F. Zachos & J.C. Habel (eds.). Biodiversity hotspots: Distribution and protection of conservation priority areas (pp. 3-22). New York: Springer.spa
dc.relation.referencesMyers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853-858.spa
dc.relation.referencesNeeff, T., & dos Santos, J.R. (2005). A growth model for secondary forest in Central Amazonia. Forest Ecology and Management, 216, 270-282.spa
dc.relation.referencesNewton, A.C. (2007). Forest Ecology and Conservation: a handbook of techniques. New York: Oxford University Press. 454 p.spa
dc.relation.referencesOchoa-Gaona, S., González-Espinosa, M., Meave, J.A., & Sorani-Dal Bon, V. (2004). Effect of forest fragmentation on the woody flora of the highlands of Chiapas, Mexico. Biodiversity and Conservation, 13, 867-884.spa
dc.relation.referencesOliver, C.D., & Larson, B.C. (1990). Forest stand dynamics. New York: McGraw-Hill Inc. 419 p.spa
dc.relation.referencesOrrego, S.A., & del Valle, J.I. (2001). Existencias y tasa de incremento neto de la biomasa y del carbono en bosques primarios y secundarios de Colombia. Valdivia: Simposio Internacional Medición y Monitoreo de la Captura de Carbono en Ecosistemas Forestales. 31 p.spa
dc.relation.referencesParresol, B.R. (2002). Biomass. En: A.H. El-Shaarawi & W.W. Piegorsch (eds.). Encyclopedia of Environmetrics (pp. 196-198). New York: John Wiley & Sons, Ltd.spa
dc.relation.referencesProdan, M. (1968). Forest biometrics. Oxford: Pergamon Press Ltd. 447 p.spa
dc.relation.referencesQuinto, H. (2010). Dinámica de la biomasa aérea en bosques primarios de Colombia y su relación con la precipitación y la altitud (Tesis de Maestría en Bosques y Conservación Ambiental). Medellín: Universidad Nacional de Colombia, sede Medellín. 75 p.spa
dc.relation.referencesR Development Core Team. (2010). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. ISBN: 3-900051-07-0, recuperado de http://www.R-project.org.spa
dc.relation.referencesRichards, K.R., & Stokes, C. (2004). A review of forest carbon sequestration cost studies: a dozen years of reserch. Climatic Change, 63: 1-48.spa
dc.relation.referencesRichter, M. (2008). Tropical mountain forest - distribution and general features. En: S.R. Grandstein, J. Homeier & D. Gansert (eds.). The tropical montane forest. Patterns and processes in a biodiversity hotspot (pp. 7-24). Göttingen: Göttingen Centre for Biodiversity and Ecology, Universitätsverlag Göttingen.spa
dc.relation.referencesRobles, C. (2006). Caracterización de la diversidad y uso de la flora silvestre en el municipio de Donmatías - Antioquia. Medellín: Corantioquia. 76 p.spa
dc.relation.referencesRollet, B. (1980). Organización. En UNESCO, UNEP, FAO (eds.). Ecosistemas de los bosques tropicales: Informe sobre el estado de conocimientos (pp.: 126-154). Madrid: UNESCO, UNEP, FAO.spa
dc.relation.referencesSaldarriaga, J.G. (1994). Recuperación de la selva de “tierra firme” en el alto río Negro, Amazonía colombiana-venezolana. Bogotá: Tropenbos. 201 p.spa
dc.relation.referencesSanín, D., & Duque, C. (2006). Estructura y composición florística de dos transectos localizados en la reserva forestal protectora Río Blaco (Manizales, Caldas, Colombia). Museo de Historia Natural, 10, 45-75.spa
dc.relation.referencesSchlegel, B., Gayoso, J., & Guerra, J. (2001). Manual de procedimientos para inventarios de carbono en ecosistemas forestales. Valdivia: Universidad Austral de Chile. 16 p.spa
dc.relation.referencesSchwarzkopf, T., Riha, S., Fahey, T., & Degloria, S. (2011). Are cloud forest tree structure and environmental related in the velezuelan Andes. Austral Ecology, 36, 280-289.spa
dc.relation.referencesSierra, C., del Valle, J.I., & Orrego, S.A. (2001). Ecuaciones de biomasa de raíces y sus tasas de acumulación en bosques sucesionales y maduros tropicales de Colombia. Valdivia: Simposio Internacional Medición y Monitoreo de la Captura de Carbono en Ecosistemas Forestales. 16 p.spa
dc.relation.referencesSierra, C., del Valle, J.I., Orrego, S.A., Moreno, F., Harmon, M., Zapata, M., Colorado, G., Herrera, M.A., Lara, W., Restrepo, D.E., Berrouet, L.M., Loaiza, L.M., & Benjumea, J.F. (2007). Total carbon stocks in a tropical forest landscape of the Porce region, Colombia. Forest Ecology and Management, 243, 299-309.spa
dc.relation.referencesToledo, M., Salick, J., Liselle, B., & Jørgensen, P. (2005). Composición florística y usos de bosques secundarios en la provincia de Guarayos, Santa Cruz, Bolivia. Revista Bolivariana de Ecología y Conservación, 18, 1-16.spa
dc.relation.referencesUhl, C., Buschbacher, R., & Serrão, E.A.S. (1988). Abandoned pastures in eastern Amazonia. I. Patterns of plant succession. Journal of Ecology, 76, 663-681.spa
dc.relation.referencesvan der Heijden, G.M.F., & Phillips, O. (2008). What controls liana success in Netropical forest? Global Ecology and Biogeography, 17, 372-383.spa
dc.relation.referencesVilches, B., Chazdon, R.L., & Milla, V. (2008). Dinámica de la regeneración natural en cuatro bosques secundarios tropicales de la región de Huertar Norte, Costa Rica: su valor para la conservación o uso comercial. Recursos Naturales y Ambiente, 55: 118-128.spa
dc.relation.referencesWalker, R., & Ataroff, M. (2002). Biomasa epifita y su contenido de nutrientes en una selva nublada andina, Venezuela. Ecotrópicos, 15, 203-210.spa
dc.relation.referencesWolf, J.H.D. (1993). Diversity patterns and biomass of epiphytic bryophytes and lichens along an altitudinal gradient in the northern Andes. Annals of the Missouri Botanical Garden, 80, 928-960.spa
dc.relation.referencesWhitmore, T.C. (1998). An introduction to tropical rain forest. Clarendon: Oxford University Press. 282 p.spa
dc.relation.referencesYepes, A.P., del Valle, J.I., Jaramillo, S.L., & Orrego, S.A. (2010). Recupueración estructural en bosques succesionales andinos de Porce (Antioquia, Colombia). Revista de Biología Tropical, 58, 427-445.spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationvolume15spa
dc.relation.citationissue2spa
dc.relation.citationeditionNúm. 2 , Año 2012 : Julio-Diciembrespa
dc.relation.ispartofjournalColombia forestalspa
dc.identifier.eissn2256-201X
dc.identifier.urlhttps://doi.org/10.14483/udistrital.jour.colomb.for.2012.2.a03
dc.relation.citationstartpage173
dc.relation.citationendpage189
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/3608/5618
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/3608/5619
dc.type.contentTextspa
dspace.entity.typePublicationspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

https://creativecommons.org/licenses/by-nc-sa/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como https://creativecommons.org/licenses/by-nc-sa/4.0/