Mostrar el registro sencillo del ítem

dc.contributor.authorMelo-Cruz, Omarspa
dc.contributor.authorRodríguez-Santos, Nathalyspa
dc.contributor.authorRojas-Ramírez, Ferneyspa
dc.date.accessioned2012-01-01 00:00:00
dc.date.accessioned2023-09-19T21:07:08Z
dc.date.available2012-01-01 00:00:00
dc.date.available2023-09-19T21:07:08Z
dc.date.issued2011-01-01
dc.identifier.issn0120-0739
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/44315
dc.description.abstractEsta investigación se realizó en el Parque Ecológico la Poma que hace parte de los paisajes de la Sabana de Bogotá y corresponde a un bosque seco Montano Bajo (bs-Mb), con presencia recurrente de heladas, lo que genera un ambiente crítico para el crecimiento de la vegetación. Se evaluó y se caracterizó el componente foliar, los patrones que definen la arquitectura de dosel y los parámetros de crecimiento funcional, para poblaciones de las especies Abatia parviflora (Ap), Dodonaea viscosa (Dv), Escallonia paniculata (Ep), Baccharis macrantha (Bm)y Quercus humboldtii (Qh), con edades entre uno y diez años, bajo la hipótesis que plantea la existencia de tendencias particulares de crecimiento asociadas a un patrón arquitectural específico. Se evaluaron variables de tipo morfométrico foliar, variables para la caracterización de la arquitectura de dosel y variables de crecimiento funcional para las especies mencionadas. Para cada variable se realizó un análisis de varianza (p < 0.05) y en el test de rango múltiple se utilizó la prueba Tukey para la separación de las medias. Como resultado se encontró que las especies con mayor eficiencia fotosintética, y por consiguiente, con mayor capacidad de acumulación de materia seca expresada en la biomasa fueron Qh y Dv, las cuales presentaron un dosel de tipo erectófilo que generó la mayor absorción lumínica. Las demás especies (Ap, Ep y Bm) tienen doseles planófilos y plagiófilos que se pueden ligar a una menor capacidad productiva. Este trabajo vislumbra el potencial de las especies leñosas arbustivas para ser utilizadas en ambientes donde los arboles tienen restringido su crecimiento.spa
dc.description.abstractThis research was carried out in La Poma Ecological Park, which is located on the Sabana de Bogotá and corresponds to an area of Lower Montane dry forest. Frequent incidences of frost means that it is a challenging environment for vegetation growth. Leaf components, patterns of canopy architecture and functional growth parameters were evaluated and characterized for populations of Abatia parviflora (Ap), Dodonaea viscosa (Dv), Escallonia paniculata(Ep), Baccharis macrantha (Bm) and Quercus humboldtii (Qh) that ranged in age from one to ten years. We hypothesized that particular growth tendencies were associated with a specific architectural pattern. Morphometric leaf, canopy architecture and functional growth variables were evaluated for these species. An Anova (P <0.05) was performed for each variable along with a multiple range Tukey test that separated the means. We found that the species with higher photosynthetic efficiency and higher dry matter accumulation capacity expressed in biomass were Qh and Dv. These species have an erectophil canopy with the highest light absorption. The other species (Ap, Ep, and Bm) have planophil and plagiophil canopies that have a lower productive capacity. This work provides information on the potential use of woody shrub species in environments where trees have restricted growth.eng
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypetext/htmlspa
dc.language.isospaspa
dc.publisherUniversidad Distrital Francisco José de Caldasspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistas.udistrital.edu.co/index.php/colfor/article/view/3714spa
dc.subjectwoody shrubeng
dc.subjectleaf areaeng
dc.subjectforest biomasseng
dc.subjectglobal climate changeeng
dc.subjectAndean plant ecophysiologyeng
dc.subjectleaf diversityeng
dc.subjectcanopy.eng
dc.subjectarbustos leñososspa
dc.subjectárea foliarspa
dc.subjectbiomasa forestalspa
dc.subjectcambio climático globalspa
dc.subjectecofisiología de plantas andinasspa
dc.subjectdiversidad foliarspa
dc.subjectdosel.spa
dc.titlePATRONES DE ARQUITECTURA FOLIAR ASOCIADOS AL CRECIMIENTO FUNCIONAL DE CINCO ESPECIES LEÑOSAS NATIVAS DE LA CORDILLERA ORIENTAL UTILIZADAS EN RESTAURACIÓN ECOLÓGICA EN LA SABANA DE BOGOTÁspa
dc.typeArtículo de revistaspa
dc.identifier.doi10.14483/udistrital.jour.colomb.for.2012.1.a04
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.localJournal articleeng
dc.title.translatedFoliar architecture patterns of five native woody species utilized for ecological restoration in Bogotáeng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.relation.referencesAhuja, L.R., Reddy, V.R., Saseendran, S.A., & Quiang, Y. (2008). Response of crops to limited water: Understanding and modeling water stress effects on plant growth processes. Madison: American Society of Agronomy Inc. 436 p.spa
dc.relation.referencesBegon, M., Townsend, C.R., & Harper, J.L. (2006). Ecology: From Individuals to Ecosystems (4th ed.). Melden-Oxford-Carlton: Blackwell Publishing Ltd. 738 p.spa
dc.relation.referencesBlaser, J., Sarre, A., Poore, D., & Johnson, S. (2011). Status of Tropical Forest Management 2011 (Technical Series No. 38). Yokohama: International Tropical Timber Organization. 28 p.spa
dc.relation.referencesBrantley, S.T., & Young, D.R. (2007). Leaf-area index and light attenuation in rapidly expanding shrub thickets. Ecology, 88(2), 524-530.spa
dc.relation.referencesCastellanos, N.M. (2001). Programa piloto de adaptación de especies nativas para la restauración de ecosistemas de bosque andino de la cordillera oriental. Parque ecológico La Poma (Tesis inédita de pregrado). Ibagué: Universidad del Tolima. 115 p.spa
dc.relation.referencesCournac, L., Duboist, M., Chavet, J., & Riera, B. (2002). Fast determination of light availability and leaf area index in tropical forests. Journal of Tropical Ecology, 18, 295-302.spa
dc.relation.referencesFageria, N.K., Baligar, V.C., & Clarck, R.B. (eds.). (2006). Physiology of crop production. London: Routledge. 345 p.spa
dc.relation.referencesFarmer, R.E. (2006). Comparative analysis of first year growth in six deciduous trees. Canadian Journal of Forestry Restoration, 36, 35-41.spa
dc.relation.referencesGajardo-Caviedez, P.A., Espinosa, M.A., González, U., & Ríos, D.G. (2005). The influence of thinning and tree size on the sapwood area/leaf area ratio in coigue. Canadian Journal Forest Restoration, 35, 1679-1685.spa
dc.relation.referencesHay, R., & Porter, J. (2006). The physiology of crop yield (2nd ed.). Oxford: Blackwell Publishing. 313 p.spa
dc.relation.referencesHopkings, W.G. (2006). Photosynthesis and respiration. New York: Chelsea House publishers. 169 p.spa
dc.relation.referencesHoover, C.H. (2008). Field measurements for forest carbon monitoring: A landscape-scale approach. Berlin: Springer. 236 p.spa
dc.relation.referencesLandsberg, J.J., & Gower, S.T. (1997). Applications of physiological ecology to forest management. New York: Academic Press. 354 p.spa
dc.relation.referencesLarcher, W. (2003). Physiology plant ecology: Ecophysiology and stress physiology of functional groups (4th ed.). Berlín: Springer. 513 p.spa
dc.relation.referencesLowman, M.D., & Rinker, H.B. (2004). Forest canopies (2nd ed.). Oxford: Elsevier Academic Press. 517 p.spa
dc.relation.referencesLüttge, U. (2008). Physiological ecology of tropical plants (2nd ed.). Berlin: Springer 458 p.spa
dc.relation.referencesLüttge, U., Beck, E., & Bartels, D. (2011). Plant desiccation tolerance: Analysis and synthesis, Vol. 215, Ecological studies. Berlin: Springer. 386 p.spa
dc.relation.referencesMcGarvey, R.C., Martin, T.A., & White, T.L. (2004). Integrating within-crown variation in net photosynthesis in loblolly and slash pine families. Tree Physiology, 24, 1209-1220.spa
dc.relation.referencesMorison, J.I.L., & Morecroft, M.D. (2006). Plant growth and climate change. Oxford: Blackwell Publishing. 213 p.spa
dc.relation.referencesNouvellon, Y., Laclau, J.P., Epron, D., Kinana, A., Mabiala, A., Roupsard, O., Bonnefond, J.M., le Maire, G., Marsden, C., Bontemps, J.D., & Saint-Andre, L. (2010). Within-stand and seasonal variations of specific leaf area in a clonal Eucalyptus plantation in the Republic of Congo. Forest Ecology and Management, 259, 1796-1807.spa
dc.relation.referencesPallardy, S.G. (2008). Physiology of woody plants (3rd ed.). San Diego: Academic Press, Elsevier. 454 p.spa
dc.relation.referencesPessarakli, M. (2002). Handbook of plant and crop physiology (2nd ed.). New York: Marcel Decker Inc. 973 p.spa
dc.relation.referencesPretzsch, H. (2009). Forest dynamics, growth and yield. From measurement to model. Berlin: Springer. 664 p.spa
dc.relation.referencesRavindranth, N.H., & Oswald, M. (2008). Carbon inventory methods: Handbook for greenhouse gas inventory, carbon mitigation and roundwood production projects. Berlin: Springer. 315 p.spa
dc.relation.referencesRiaño N.M., Tangarife, G., Osorio, O.I., Girald, J.F., Ospina, C.M., Obando, D., Gómez, L., & Jaramillo, L.F. (2005). Modelo de crecimiento y captura de carbono para especies forestales en el trópico. Bogotá: Cenicafé - Ministerio de Agricultura y Desarrollo Rural - Conif - Federación Nacional de Cafeteros de Colombia. 51 p.spa
dc.relation.referencesRodríguez, N. (2010). Determinación del carbono capturado por cinco especies arbóreas y arbustivas del bosque seco altoandino en el Parque Ecológico la Poma (Tesis inédita de pregrado). Ibagué: Universidad del Tolima. 85 p.spa
dc.relation.referencesSack, L., & Frole, K. (2006). Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology, 87, 483-491.spa
dc.relation.referencesSack, L., & Holbrook, N.M. (2006). Leaf hydraulics. Annual Review of Plant Biology, 57, 361-381.spa
dc.relation.referencesSalisbury, F.B., & Ross, C.W. (1992). Plant physiology (4th ed.). Belmont: Wadsworth Publishing Company. 682 p.spa
dc.relation.referencesSokal, R.R., & Rohlf, F.J. (2009). Introduction to biostatistics. New York: John Wiley and Sons, Inc. 768 p.spa
dc.relation.referencesTaiz, L., & Zeiger, E. (2006). Plant physiology (4th ed.). New York: Sinauer Associates. 690 p.spa
dc.relation.referencesTerashima, I., & Hikosaka, K. (2005). Comparative ecophysiology of leaf and canopy photosynthesis. Plant Cellular Environment, 18, 1111-1128.spa
dc.relation.referencesWareing, P.F., & Phillips, I.D.J. (2006). Growth and differentiation in plants (4th ed.). Oxford: Pergamon Press. 343 p.spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationvolume15spa
dc.relation.citationissue1spa
dc.relation.citationeditionNúm. 1 , Año 2012 : Enero-Juniospa
dc.relation.ispartofjournalColombia forestalspa
dc.identifier.eissn2256-201X
dc.identifier.urlhttps://doi.org/10.14483/udistrital.jour.colomb.for.2012.1.a04
dc.relation.citationstartpage119
dc.relation.citationendpage130
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/3714/5324
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/3714/5313
dc.type.contentTextspa
dspace.entity.typePublicationspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

https://creativecommons.org/licenses/by-nc-sa/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como https://creativecommons.org/licenses/by-nc-sa/4.0/