Mostrar el registro sencillo del ítem

dc.contributor.authorVallejo Quintero, Victoria Eugeniaspa
dc.date.accessioned2013-01-01 00:00:00
dc.date.accessioned2023-09-19T21:07:19Z
dc.date.available2013-01-01 00:00:00
dc.date.available2023-09-19T21:07:19Z
dc.date.issued2013-01-01
dc.identifier.issn0120-0739
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/44345
dc.description.abstractLa sostenibilidad ambiental se alcanza a través del mantenimiento y el mejoramiento de la calidad del suelo. Dicha calidad es definida, como la “capacidad del suelo para funcionar”; y se evalúa midiendo un grupo mínimo de datos que corresponden a diversas propiedades edáficas. Sin embargo, no todos los parámetros cumplen con todas las condiciones que debe reunir un indicador ideal como: generar una clara discriminación entre los sistemas de uso y/o manejo evaluados, ser sensibles a condiciones de estrés asociadas con intervenciones antrópicas, ser de fácil medición, accesibles a muchos usuarios y que respondan en escalas de tiempo cortas. Debido a que la pérdida de calidad está asociada con la alteración de numerosos procesos realizados por los microorganismos edáficos, además de que reúnen las condiciones anteriormente mencionadas, se han propuesto como indicadores para diagnosticar el impacto generado por cambios en el uso del suelo. De esta manera, a través de la evaluación de su densidad, actividad y/o estructura-composición se puede conocer sí los actuales sistemas de manejo conservan, mejoran o degradan el suelo. En este artículo se realiza una revisión de los principales conceptos relacionados con la calidad del suelo y sus indicadores. Adicionalmente, se aborda y discute acerca del efecto generado sobre la calidad edáfica debido a la implementación de sistemas silvopastoriles, haciendo énfasis en indicadores microbianos.spa
dc.description.abstractEnvironmental sustainability is achieved by main-taining and improving soil quality. This quality is defined as “the ability of soil to function” and is evaluated through measuring a minimum set of data corresponding to different soil properties (physical, chemical and biological). However, assessment of these properties does not meet all the conditions necessary to be ideal indicators such as: clearly discriminating between the systems use and / or management evaluation, sensitivity to stress conditions associated with anthropogenic actions, easy measurement, accessibility to many users and short response time. Because loss in quality is associated with the alteration of many processes performed by soil microorganisms they meet the above conditions and have been proposed as valid indicators for diagnosing the impact of changes in land-use and ecosystem restoration. Thus, through the evaluation of the density, activity and /or structure-composition of microorganisms we can determine whether current management systems maintain, improve or degrade the soil. In this article we review the main concepts related to soil quality and its indicators. We discuss the effect of the implementation of silvopastoral systems on soil quality, with an emphasis on the use of microbial indicators.eng
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypetext/htmlspa
dc.language.isospaspa
dc.publisherUniversidad Distrital Francisco José de Caldasspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistas.udistrital.edu.co/index.php/colfor/article/view/3955spa
dc.subjectCalidad del suelospa
dc.subjectindicadores de calidadspa
dc.subjectmicroorganismos edáficosspa
dc.subjectsistemas agroforestalesspa
dc.subjectsistemas silvopastorilesspa
dc.subjectuso del suelospa
dc.titleImportancia y utilidad de la evaluación de la calidad de suelos a través del componente microbiano: Experiencias en sistemas silvopastorilesspa
dc.typeArtículo de revistaspa
dc.identifier.doi10.14483/udistrital.jour.colomb.for.2013.1.a06
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_dcae04bcspa
dc.type.localJournal articleeng
dc.title.translatedImportance and utility of microbial elements in evaluating soil quality: case studies in silvopastoral systemseng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.relation.referencesAcosta-Martínez, V., Bell, C.W., Morris, B.E.L., Zak, J., & Allen, V.G. (2010). Long-term soil microbial community and enzyme activity responses to an integrated cropping-livestock system in a semiarid region. Agriculture, Ecosystems & Environment, 137, 231-240.spa
dc.relation.referencesAltieri, M., & Nicholls, C. (2004). Una base agroecológica para el diseño de sistemas diversificados de cultivo en el Trópico. Manejo Integrado de Plagas y Agroecología, 73, 8-20.spa
dc.relation.referencesAmatya, G., Chang, S., Beare, M., & Mead, D. (2002). Soil properties under a Pinus radiata - ryegrass silvopastoral system in New Zealand. Part II. C and N of soil microbial biomass, and soil N dynamics. Agroforestry Systems, 54, 149-160.spa
dc.relation.referencesAstier, M., Maas, M., & Etchevers, J. (2002). Derivación de indicadores de calidad de suelos en el contexto de la agricultura sustentable. Agrociencia, 36, 605-620.spa
dc.relation.referencesBandick, A.K., & Dick, R.P. (1999). Field management effects on soil enzyme activities. Soil Biology and Biochemistry, 31, 1471-1479.spa
dc.relation.referencesBonanomia, G., D’Ascolic, A., Antignania, V., Capodilupoa, M., Cozzolinoa, L., Marzaiolic, R., Puopoloa, G., Rutiglianoc, F., Scelzab, R., Scotti, R., Raob, M.A., & Zoinaa, A. (2011). Assessing soil quality under intensive cultivation and tree orchards in Southern Italy. Applied Soil Ecology, 47,184-194.spa
dc.relation.referencesBone, J., Head, M., Barraclough, D., Archer, M., Scheib, C., Flight, D., & Voulvoulis, N. (2010). Soil quality assessment under emerging regulatory requirements. Environment International, 36, 609-622.spa
dc.relation.referencesCantú, M., Becker, A., Bedano, J., & Schiavo, H. (2007). Evaluación de la calidad de suelos mediante el uso de indicadores e índices. Ciencia del Suelo, 25, 173-178.spa
dc.relation.referencesDe la Paz-Jiménez, M., De la Horra, A.M., Pruzzo, L., & Palma, R.M. (2002). Soil quality: a new index based on microbiological and biochemical parameters. Biology Fertility Soils, 35, 302–306.spa
dc.relation.referencesDe la Rosa, D. (2005). Soil quality and monitoring based on land evaluation. Land Degradation & Development, 16, 551-559.spa
dc.relation.referencesDe la Rosa, D., & Sobral, R. (2008). Soil quality and methods for its assessment. En: A.K. Braimoh & P.L.G. Vlek (eds.). Land Use and Soil Resources (pp.167-190). Dordrecht: Springer Science Musiness Media.spa
dc.relation.referencesDoran, J.W., & Parkin, T.B. (1994). Defining and assessing soil quality. En J.W. Doran, D.C. Coleman, D.E. Bezdicek, & B.A. Stewart (eds.). Defining soil quality for sustainable environment (pp.3-21). Madison: Soil Science Society of America.spa
dc.relation.referencesDoran, J.W., & Zeiss, M.R. (2000). Soil health and sustainability: managing the biotic component of soil quality. Applied Soil Ecology, 15, 3-11.spa
dc.relation.referencesFAO [Food and Agriculture Organization of the United Nations]. (2007). El estado mundial de la agricultura y la alimentación: La ganadería a examen. Roma: FAO. 200 p.spa
dc.relation.referencesFließbach, A., Oberholzer, H-R., Gunst, L., & Mäder, P. (2007). Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agriculture, Ecosystems and Environment, 118, 273-284.spa
dc.relation.referencesGalantini, J.A., & Suñer, L. (2008). Las fracciones orgánicas del suelo: análisis en los suelos de la Argentina. Agriscientia, 25(1), 41-55.spa
dc.relation.referencesGarbeva, P., van Veen, J.A., & van Elsas, J.D. (2004). Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annual Review of Phytopathology, 42, 243-270.spa
dc.relation.referencesGil-Stores, F., Trasar-Cepeda, C., Leiros, M.C., & Seoane, S. (2005). Different approaches to evaluating soil quality using biochemical properties. Soil Biology and Biochemistry, 37, 877-887.spa
dc.relation.referencesGiraldo, C., Escobar, F., Chará, J.D., & Calle, Z. (2010). The adoption of silvopastoral systems promotes the recovery of ecological processes regulated by dung beetles in the Colombian Andes. Insect Conservation and Diversity, 4, 115-122.spa
dc.relation.referencesGuimaraes, D.V., Silva Gonzaga, M.I., Oliveira da Silva, T., Lima da Silva, T., Silva Dias, N., & Silva Matias, M.I. (2013). Soil organic matter pools and carbon fractions in soil under different land uses. Soil & Tillage Research, 126, 177-182.spa
dc.relation.referencesHaile, S., Nair, K.R., & Nair, V.D. (2008). Carbon storage of different soil-size fractions in Florida silvopastoral systems. Journal of Environmental Quality, 37, 1789-1797.spa
dc.relation.referencesHaynes, R.J. (2005). Labile organic matter fractions as central components of the quality of agricultural soils: an overview. Advances in Agronomy, 85, 221-268.spa
dc.relation.referencesHernández-Hernández, R.M., & López-Hernández, D. (2002). El tipo de labranza como agente modificador de la materia orgánica: un modelo para suelos de sabana de los llanos centrales venezolanos. Interciencia, 27(10), 529-536.spa
dc.relation.referencesKarlen, D.L., Andrews, S.S., & Doran, J.W. (2001). Soil quality: current concepts and applications. Advances in Agronomy, 74, 1-40.spa
dc.relation.referencesKarlen, D., Ditzler, C.A., & Andrews, S.S. (2003). Soil quality: why and how? Geoderma, 114, 145-156.spa
dc.relation.referencesKaur, B., Gupta, S., & Singh, G. (2002). Bioamelioration of a sodic soil by silvopastoral systems in northwestern India. Agroforestry Systems, 54, 13-20.spa
dc.relation.referencesLabrador, J., & Altieri, M.A. (2001). Agroecología y desarrollo: aproximación a los fundamentos agroecológicos para la gestión sustentable de agroecosistemas mediterráneos. Madrid: Universidad de Extremadura. 566 p.spa
dc.relation.referencesLuters, J.C., & Salazar, J.P. (1999). Guía para la evaluación de la calidad y salud del suelo. Buenos Aires: United States Department of Agriculture, CRN-CNIA-INTA. 88 p.spa
dc.relation.referencesMahecha, L. (2003). Importancia de los sistemas silvopastoriles y principales limitantes para su implementación en la ganadería colombiana. Revista Colombiana de Ciencias Pecuarias, 16, 11-17.spa
dc.relation.referencesMahecha, L., Gallego, L.A., & Peláez, F. (2002). Situación actual de la ganadería de carne en Colombia y alternativas para impulsar su competitividad y sostenibilidad. Revista Colombiana de Ciencias Pecuarias, 15, 213-225.spa
dc.relation.referencesMolina, C.H., Molina, C.H., Molina, E., & Molina, J.P. (2008). Carne, leche y mejor ambiente en el sistema silvopastoril con Leucaena leucocephala. En E. Murgueitio, C. Cuartas & J. Naranjo (eds.). Ganadería del futuro: Investigación para el desarrollo (pp. 41-65). Cali: Fundación CIPAV.spa
dc.relation.referencesMolina, C.H., Molina, C.H., Molina, E.J., Molina, J.P., Navas, A., Ibrahim, M. (comp.) (2001). Advances in the implementation of high tree-density silvopastoral systems. Silvopastoral systems for restoration of degraded tropical pasture ecosystems. Turrialba: International Symposium on Silvopastoral Systems, 2 Congress on Agroforestry and Livestock Production in Latin America. 299-302 p.spa
dc.relation.referencesMurgueitio, E., & Ibrahim, M. (2008). Ganadería y medio ambiente en América Latina. En E. Murgueitio, C. Cuartas & J. Naranjo (eds.). Ganadería del futuro: Investigación para el desarrollo (pp. 19-40). Cali: Fundación CIPAV.spa
dc.relation.referencesMurgueitio, E., Calle, Z., Uribe, F., Calle, A., & Solorio, B. (2011). Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. Forest Ecology and Management, 10, 1654-1663.spa
dc.relation.referencesNair, P. (1997). Directions in tropical agroforestry research: past, present, and future. Agroforestry Systems, 38, 223-246.spa
dc.relation.referencesNair, P.K.R., Kang,B.T., & Kass, D.B.L. (1995). Nutrient cycling and soil erosion control in agroforestry system. American Society of Agronomy, 60, 117-138.spa
dc.relation.referencesNavarrete, A., Vela, G., López, J., & Rodríguez, M.L. (2011). Naturaleza y utilidad de los indicadores de calidad del suelo. Revista Contactos, 80, 29-37.spa
dc.relation.referencesNielsen, M., & Winding, A. (2002). Microorganisms as indicators of soil health. Denmark: Ministry of the Environment, National Environmental Research Institute. 84 p.spa
dc.relation.referencesParfitt, R L., Yeates, G.W., Ross, D.J., Schon, N.L., Mackay, A.D., & Wardle, D.A. (2010). Effect of fertilizer, herbicide and grazing management of pastures on plant and soil communities. Applied Soil Ecology, 45, 175-186.spa
dc.relation.referencesPaudel B.R., Udawatta, R.P., & Anderson, S.H. (2011). Agroforestry and grass buffer effects on soil quality parameters of grazed pasture and row-crop systems. Applied Soil Ecology, 48, 125-132.spa
dc.relation.referencesPaudel, B.R., Udawatta, R.P., Kremer, J.R., & Anderson, S.H. (2012). Soil quality indicator responses to row crop, grazed pasture, and agroforestry buffer management. Agroforestry Systems, 84, 311-323.spa
dc.relation.referencesReis, G., Lana, Â., Mauricio, R., Lana, R., Machado, R., Borges, I., & Neto, T. (2009). Influence of trees on soil nutrient pools in a silvopastoral system in the Brazilian Savannah. Plant and Soil, 329, 185-193.spa
dc.relation.referencesRomaniuka, R., Giuffrea, L., Costantinia, A., & Nannipieri, P. (2011).Assessment of soil microbial diversity measurements as indicators of soil functioning in organic and conventional horticulture systems. Ecological Indicators, 11, 1345-1353.spa
dc.relation.referencesRousseaua, G.X., Deheuvelsb, O., Rodríguez Arias, I., & Somarribae, E. (2012). Indicating soil quality in cacao-based agroforestry systems and old-growth forests: The potential of soil macrofauna assemblage. Ecological Indicators, 23, 535-543.spa
dc.relation.referencesSchloter, M., Dilly, O., & Munch, J.C. (2003) Indicators for evaluating soil quality. Agriculture, Ecosystems & Environment, 98, 255-262.spa
dc.relation.referencesSchoenholtza, S.H., Van Miegroet, H., & Burger, J.A. (2000). A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities. Forest Ecology and Management, 138, 335-356.spa
dc.relation.referencesSilva, G.L., Lima, H.V., Campanha, M.M., Gilkes, R.J., & Oliveira, T.S. (2011). Soil physical quality of Luvisols under agroforestry, natural vegetation and conventional crop management systems in the Brazilian semi-arid region. Geoderma, 167-168: 61-70.spa
dc.relation.referencesSQI [Soil Quality Institute]. (1996a). Indicators for Soil Quality Evaluation. Auburn: UDSA Natural Resources Conservation Service, Soil Quality Institute, Agricultural Research Service. 2 p.spa
dc.relation.referencesSQI [Soil Quality Institute]. (1996b). Soil Quality Indicators: Organic Matter. Auburn: UDSA Natural Resources Conservation Service, Soil Quality Institute, Agricultural Research Service. 2 p.spa
dc.relation.referencesStaley, T., Gonzalez, J., & Neel, J. (2008). Conversion of deciduous forest to silvopasture produces soil properties indicative of rapid transition to improved pasture. Agroforestry Systems, 74, 267-277.spa
dc.relation.referencesTan, Z., Lal, R., Owens, L., & Izaurralde, R.C. (2007). Distribution of light and heavy fractions of soil organic carbon as related to land use and tillage practice. Soil and Tillage Research, 92, 53-59.spa
dc.relation.referencesTripathi, G., Ram, S., Sharma, B.M., & Singh, G. (2005). Soil faunal biodiversity and nutrient status in silvopastoral systems of Indian desert. Environmental Conservation, 32, 178-188.spa
dc.relation.referencesUdawatta, R.P., Kremer, R.J., Garrett, H.E, & Anderson, S.H. (2009). Soil enzyme activities and physical properties in a watershed managed under agroforestry and row-crop systems. Agriculture, Ecosystems & Environment, 131, 98-104.spa
dc.relation.referencesUdawatta, R.P., Kremer, R.J., Adamson, B.W., Anderson, S.H., & Garrett, H.E. (2008). Variations in soil aggregate stability and enzyme activities in a temperate agroforestry practice. Agriculture, Ecosystems & Environment, 39, 153-160.spa
dc.relation.referencesVallejo, V. (2012). Efecto del establecimiento de sistemas silvopastoriles sobre la comunidad microbiana edáfica (total y de bacterias oxidadoras de amonio) en la Reserva Natural: El Hatico-Valle (Tesis doctoral). Bogotá: Pontificia Universidad Javeriana. 239 p.spa
dc.relation.referencesVallejo, V., Roldan, F., & Dick, R.P. (2010). Soil enzymatic activities and microbial biomass in an integrated agroforestry chronosequence compared to monoculture and a native forest of Colombia. Biology and Fertility of Soils, 46, 577-587.spa
dc.relation.referencesVallejo, V.E., Roldán, F., Arbeli, Z., Terán, W., Lorenz, N., & Dick, R.P. (2012). Effect of land management and Prosopis juliflora (Sw.) DC trees on soil microbial community and enzymatic activities in silvopastoral systems of Colombia. Agriculture, Ecosystems & Environment, 150, 139-148.spa
dc.relation.referencesVan der Heijden, M.G.A., Bardgett, R.D., & Van Straalen, N.M. (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11, 296-310.spa
dc.relation.referencesWang, Q., Liu, J., Wang, Y., Guan, J., Liu, Q., & Lv, D. (2012). Land use effects on soil quality along a native wetland to cropland chronosequence. European Journal of Soil Biology, 53, 114-120.spa
dc.relation.referencesWeil, R.R., & Magdoff, F. (2004). Significance of soil organic matter to soil quality and health. En R.R. Weil & F.F. Magdoff (eds.). Soil Organic Matter in Sustainable Agriculture, Advances in Agroecology (pp. 1-34). London : Taylor & Francis.spa
dc.relation.referencesXu, M., Lou, Y., Sun, X., Wang, W., Baniyamuddin, M., & Zhao, K. (2011). Soil organic carbon active fractions as early indicators for total carbon change under straw incorporation. Biology and Fertility of Soils, 47, 745-752.spa
dc.relation.referencesYadav, R.S, Yadav, B.L, Chhipa, B.R., Dhyani, S.K., & Munna, R. (2011). Soil biological properties under different tree based traditional agroforestry systems in a semi-arid region of Rajasthan, India. Agroforestry Systems, 81, 191-201.spa
dc.relation.referencesZhou, X., Chen, C., Lu, S., Rui, Y., Wu, H., & Xu, Z. (2012). The short-term cover crops increase soil labile organic carbon in southeastern Australia. Biology and Fertility of Soils, 48, 239-244.spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREVspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationvolume16spa
dc.relation.citationissue1spa
dc.relation.citationeditionNúm. 1 , Año 2013 : Enero-Juniospa
dc.relation.ispartofjournalColombia forestalspa
dc.identifier.eissn2256-201X
dc.identifier.urlhttps://doi.org/10.14483/udistrital.jour.colomb.for.2013.1.a06
dc.relation.citationstartpage83
dc.relation.citationendpage99
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/3955/5890
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/3955/5933
dc.type.contentTextspa
dspace.entity.typePublicationspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

https://creativecommons.org/licenses/by-nc-sa/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como https://creativecommons.org/licenses/by-nc-sa/4.0/