Mostrar el registro sencillo del ítem

dc.contributor.authorCharria, Diana Lucia Giraldospa
dc.contributor.authorRodríguez, Victor Nietospa
dc.contributor.authorOviedo, Monica Bibiana Sarmientospa
dc.contributor.authorGonçalves, Nuno Manuel Borralhospa
dc.date.accessioned2014-07-01 00:00:00
dc.date.accessioned2023-09-19T21:07:35Z
dc.date.available2014-07-01 00:00:00
dc.date.available2023-09-19T21:07:35Z
dc.date.issued2014-07-01
dc.identifier.issn0120-0739
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/44361
dc.description.abstractSe presentan los resultados del uso de Pilodyn para la medición indirecta de la densidad de la madera, comparado con un muestreo no destructivo por tarugos y un método directo o destructivo por colecta de secciones del fuste (discos). Se validó el uso del Pilodyn como criterio de selección y método alternativo para la valoración de la densidad en árboles en pie. El análisis se efectuó en 10 de los mejores clones de Eucalyptus pellita F. Muell. desarrollados en el programa de mejoramiento de la empresa Reforestadora de la Costa en la Orinoquia colombiana. La determinación de la densidad por tarugos y rodajas se basó en el método de inmersión y desplazamiento de agua. Se confirmó la alta densidad de la madera de E. pellita, con un promedio de 580 kg/m3. Los valores de heredabilidad obtenidos para los tres métodos fueron altos y cercanos entre sí (de 0.47 a 0.55). Las correlaciones fenotípicas y genéticas entre los métodos directos (tarugos y rodajas) y el método indirecto por Pilodyn fueron de moderadas a altas (de 0.45 hasta 0.96). Estos resultados indican que el uso de Pilodyn puede resultar en una estrategia eficiente para estimar de manera indirecta la densidad a nivel clonal, lo que permite incluir de manera sencilla esta variable como criterio de selección de clones, especialmente cuando deben evaluarse muchos individuos por clon. Por otro lado, las estimaciones de densidad en árboles individuales con Pilodyn muestran que el método no es recomendable para ser aplicado en selecciones individuales.spa
dc.description.abstractThe study presents the results of a comparison between Pilodyn and other direct estimates such as disks and cores, to determine wood density of Eucalyptus pellita F. Muell clones.The accuracy of Pilodynas a reliable selection criteria for determining the density in standing trees was evaluated. The analysis was based on a collection of ten clones developed by Reforestadora de la Costa, in the Orinoquia of Colombia as part of their breeding program. Wood density of cores and disks were calculated based on the standard water displacement method. The results confirm E. pellita is a high density species, with an average value of 580 kg/m3, based on disks. The estimates of clonal heritability for the three methods were high and similar (between 0.47 and 0.55), as were the phenotypic and genetic correlations between them (between 0.43 and 0.96). This indicates that Pilodyn is an effective indirect selection tool for assessing wood density of E. pellita clones, especially when many individuals need to be assessed per clone. However, Pilodynis not recommended as a tool for selecting individuals.eng
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypetext/htmlspa
dc.language.isospaspa
dc.publisherUniversidad Distrital Francisco José de Caldasspa
dc.rightsColombia Forestal - 2014spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistas.udistrital.edu.co/index.php/colfor/article/view/5109spa
dc.subjectbasic densityeng
dc.subjectheritabilityeng
dc.subjectgeneticeng
dc.subjectnon-destructive methodeng
dc.subjectclonal selectioneng
dc.subjectdensidad básicaspa
dc.subjectheredabilidadspa
dc.subjectgenéticaspa
dc.subjectmétodo no destructivospa
dc.subjectselección clonalspa
dc.titleEstimación indirecta de densidad por el uso de “pilodyn” en Eucalyptus pellita F. Muell.spa
dc.typeArtículo de revistaspa
dc.identifier.doi10.14483/udistrital.jour.colomb.for.2014.2.a04
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.localJournal articleeng
dc.title.translatedIndirect estimation of wood density for selection of Eucalyptus pellita F. Muell. clones using pilodyneng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.relation.referencesAmerican Society for Testing and Materials. (2001). Standard test methods for specific gravity of wood and wood-based materials. ANSI/ASTM Vol. 4. 09; D2395.spa
dc.relation.referencesBorralho, N., Cotterill, P. & Kanowski, P. (1993). Breeding objectives for pulp production of Eucalyptus globulus under different industrial cost structures. Canadian Journal of Forest Research, 23, 648-656spa
dc.relation.referencesCallister, A. & England, N. (2010). How dense is my blue gum? prediction of whole-tree basic density of Eucalyptus globulus. New Forests , 40 (2), 153-164.spa
dc.relation.referencesCouto, A., Trugilho, P., Andrade, T., Protásio, T. & Sá, V. (2013). Modeling of basic density of wood from Eucalyptus grandis and Eucalyptus urophylla using nondestructive methods. Cerne, 19 (1), 27-34.spa
dc.relation.referencesDean, G., French, J. & Tibbits, W. (1990).Variation in pulp making characteristics in a field trial of Eucalyptus globulus. In: 44th Annual Appita General Conference, Rotorua, New Zealand.spa
dc.relation.referencesDownes, G.M., Hudson, I.L., Raymond, C.A., Dean, G.H., Michell, A.J., Schimleck, L.R., Evans, R. & Muneri, A. (1997). Sampling plantation eucalypts for wood and fibre properties. (pp. 1-10). Collingwood: CSIRO Publishing.spa
dc.relation.referencesFalconer, D. & Mackay, T. (1996). Introduction to quantitative genetics. Agricultural Research Council's. Unit of Animal Genetics. Univerisity of Edinburg. 4ta Ed. Prentice Hall. 464 p.spa
dc.relation.referencesFonseca, S., Resende, M., Alfenas, A., Guimarães, L., Assis, T., & Grattapaglia, D. (2010). Manual prático de melhoramento genetico do eucalipto. (pp. 39-42). Editora UFV - Universidade Federal de Viccedil;osa.spa
dc.relation.referencesGea, L., McConchie, R. & Borralho, N.(1997). Genetic parameters for growth and wood density traits in New Zealand. New Zealand Journal of Forestry Science, 27 (3), 237-244spa
dc.relation.referencesGilmour, A.R., Cullis, B.R., Welham, S.J. & Thompson, R. (1998). ASREML Users' Manual. New South Wales Agriculture, Orange: Orange Agric. Inst.spa
dc.relation.referencesGouvêa, A., Trugilho, P., Gomide, J., Moreira, R., Andrade, C. & Nogueira, I. (2011a). Determinaccedil;ão da densidade básica da madeiras de eucalyptus por diferentes métodos não destrutivos. árvore, 35 (2), 349-358.spa
dc.relation.referencesGouvêa, A., Trugilho, P., Colodette, J., Bianchi, M.L., Soragi, L.C. & Oliveira, A.C. (2011b). Relaccedil;ão entre características da madeira da polpa celulósica de Eucalyptus com métodos não destrutivos na árvore viva. Scientia Forestalis, 39 (90), 205-220.spa
dc.relation.referencesGreaves, B.L., Borralho, N., Raymond, C.A. & Farrington, A. (1996). Use of Pilodyn for the indirect selection of basic density in Eucalyptus nitens. Canadian Journal of Forest Reseach, 26 (9), 1643-1650.spa
dc.relation.referencesHarwood, C. (1998). Eucalyptus pellita. An annotated bibliography. Kingston: Csiro Forestry and Forest Products.70 p.spa
dc.relation.referencesInstrumenta Mechanik Labor System. (2009). Instruction for Use Increment Borer “SUUNTO“ 300/ 400 mm. Recuperado de http://www.imlusa.com/html/increment_borer.htmlspa
dc.relation.referencesKien, N.D., Jansson, G., Harwood, C. & Almqvist, C. (2010). Clonal variation and genotype by environment interactions in growth and wood density in Eucalyptus camaldulensis at three contrasting sites in Vietnam. Silvae genetica, 59 (1), 17-22spa
dc.relation.referencesLynch, M. & Walsh, B. (1998). Genetics and Analysis of Quantitative Traits. Sunderland: Sinauer Associates Inc. 980 p.spa
dc.relation.referencesNieto, V. & Gasca, G. 2010. Experiencias y avances en el manejo de Eucalyptus pellita F. Muell en la Orinoquia Colombiana. Bogotá: CONIF, Ministerio de Agricultura, Refocosta S.A. 98 p.spa
dc.relation.referencesOliveira, A.C., Carneiro, A.C.O., Vital, B.R., Almeida, W., Pereira, B.L.C. & Cardoso, M.T. (2010). Parâmetros de qualidade da madeira e do carvão vegetal de Eucalyptus pellita F. Muell. Scientia Forestalis, 38 (87), 431-439spa
dc.relation.referencesPan-Amazonian. (2006). Project for the advancement of networked science in Amazonian,Measuring wood density for tropical forest trees a field manual. Recuperado, de http://www.eci.ox.ac.uk/research/ecodynamics/panamazonia/wood_density_english.pdfspa
dc.relation.referencesPereira, J.C.D., Sturion, J.A., Higa, A.R., Higa, R.C.V. & Shimizu, J.Y. (2000). Características da madeira de algumas espécies de eucalipto plantadas no Brasil. vol 38. Colombo: Embrapa Florestas, 113 p.spa
dc.relation.referencesPilegaard, C. (2000).Application of the Pilodyn in forest tree improvement. Technical note no. 55 – Danida Forest Seed Centre. July 2000spa
dc.relation.referencesRaymond, C.A. (2002). Genetics of Eucalyptus wood properties. Annals of Forest Science , 59, 525-531spa
dc.relation.referencesRaymond, C.A. & MacDonald, A.C.(1998). Where to shoot your Pilodyn: within tree variation in basic density in plantation Eucalyptus globulus and E. nitens in Tasmania. New Forests, 15 (3), 205-221.spa
dc.relation.referencesReforestadora de la costa [REFOCOSTA]. (2010). Recopilacion de los avances en mejoramiento genético forestal. Proyecto Villanueva. Informe empresarial.(pp: 5-9)Villanueva: Refocosta.spa
dc.relation.referencesResquin, F., Barrichelo, L.E.G., Silva, F.G.S., Brito, J.O. >& Sansigolo, C.A.(2006). Wood quality for kraft pulping of Eucalyptus globulus origins plantes in Uruguay. Scientia Forestalis, 72, 57-66spa
dc.relation.referencesSusilawati, S. & Fujisawa, Y. (2002). Family varition on wood density and fiber length of Eucalyptus pellita in seedling seed orchard Pleihari, South Kalimantan. In: Rimbawanto AaS, M. (ed) Advances in genetic improvement of tropical tree species. Proceedings of the International Conference (pp 53-56), Yogyakarta, Indonesia, 1-3 October, 2002spa
dc.relation.referencesSusilawati, S. & Marsoem, S.N. (2006). Variation in wood physical properties of Eucalyptus pellita growing in seedling seed orchard in Pleihari, South Kalimantan. Journal of Forestry Research, 3 (2), 123-138spa
dc.relation.referencesThe leading association for the worldwide pulp, paper, packaging and converting industries [TAPPI]. (2011). Basic density and moisture content of pulpwood. T258 om-11.spa
dc.relation.referencesThiersch, C.R., Scolforo, J.R., Oliveira, A.D., Rezende, G.D. & Maestri, R. (2006). O uso de modelos matemáticos na estimativa da densidade básica da madeira em plantios de clones de Eucalyptus sp. Cerne, 12 (3), 264-278.spa
dc.relation.referencesTibbits, W.N., Dean, G. & French, J. (1990).Wood evaluation and estimation of genetic parameters for 8 year-old Eucalyptus globulus. In: 44th Appita Annual General Conference, Rotorua, New Zealand 16p.spa
dc.relation.referencesWei, X. & Borralho, N. (1997). Genetic control of wood basic density and bark thickness and their relationships with growth traits of Eucalyptus urophylla in South East China. Silvae genetica, 46 (4-5), 245-249spa
dc.relation.referencesWimmer, R., Downes, G., Evans, R., Rasmussen, G. & French, J. (2002). Direct effects of woood characteristics on pulp and handsheet properties of Eucalyptus globulus. Holzforschung, 56 (3), 244-252spa
dc.relation.referencesWu, S., Xu, J., Li, G., Risto, V., Lu, Z., Li, B. & Wang, W.(2010).Use of the Pilodyn for assessing wood properties in standing trees of Eucalyptus clones. Journal of Forestry Research, 21 (1), 68-72spa
dc.relation.referencesYang, J.L. & Evans, R. (2003). Prediction of MOE of eucalypt wood from microfibril angle and density. Holz als Roh- und Werkstoff ,61 (6),449-452spa
dc.relation.referencesZobel, B. & Van Buijtenen, J. (1989). Wood variation, Its causes and Control. Springer Series in Wood Science, Springer-Verlag 363 p.spa
dc.relation.referencesZobel, B. & Talbert, J. (1992). Técnicas de mejoramiento genético de árboles forestales (pp.408-442). Raleigh: Limusa.spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationvolume17spa
dc.relation.citationissue2spa
dc.relation.citationeditionNúm. 2 , Año 2014 : Julio-Diciembrespa
dc.relation.ispartofjournalColombia forestalspa
dc.identifier.eissn2256-201X
dc.identifier.urlhttps://doi.org/10.14483/udistrital.jour.colomb.for.2014.2.a04
dc.relation.citationstartpage181
dc.relation.citationendpage192
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/5109/9648
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/5109/9707
dc.type.contentTextspa
dspace.entity.typePublicationspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Colombia Forestal - 2014
Excepto si se señala otra cosa, la licencia del ítem se describe como Colombia Forestal - 2014