Mostrar el registro sencillo del ítem

dc.contributor.authorSanchez, Davidspa
dc.contributor.authorPinilla Agudelo, Gabriel Antoniospa
dc.contributor.authorMancera Pineda, Josespa
dc.date.accessioned2015-07-01 00:00:00
dc.date.accessioned2023-09-19T21:07:40Z
dc.date.available2015-07-01 00:00:00
dc.date.available2023-09-19T21:07:40Z
dc.date.issued2015-07-01
dc.identifier.issn0120-0739
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/44373
dc.description.abstractCon el objetivo de evaluar los efectos del uso del suelo sobre la cuenca del caño Camoa, Meta, se cuantificó el contenido de materia orgánica edáfica (CMOE), la densidad aparente y el contenido de agua en condiciones de campo y capacidad de campo. Para ello se extrajeron núcleos de suelo de bosques y pastizales riparios con diferente productividad de hojarasca y se evaluó la relación entre el CMOE y el volumen deficitario de agua mediante regresiones. Así mismo, se identificó mediante trampas de caída la organización trófica de los artrópodos de la superficie del suelo. Debido a sus CMOE superiores al 5%, los suelos con mayor cantidad de hojarasca (alta productividad) presentaron contenidos de agua superiores a los de bosques menos productivos y de pastizales (p < 0.05 en ambos casos). Las diferencias en el contenido de agua de los suelos de las distintas coberturas evaluadas sugieren que el papel de la escorrentía superficial en los bosques ha sido subestimado. El manejo de cuencas debe propender por el establecimiento de bosques productivos que generen CMOE superiores al 5%, para promover la continuidad y el volumen en la oferta hídrica de los ríos al generar flujos constantes de agua subsuperficial y al regular flujos esporádicos superficiales. La variedad de funciones e interacciones tróficas que cumplen los artrópodos del suelo en los bosques indica que una estructuración óptima de esta comunidad favorecería la conversión de compuestos simples y complejos en humus y por lo tanto la capacidad de retención de agua.spa
dc.description.abstracthis study evaluate the effects of land use on the Camoa water basin in Meta by quantifying the effect of soil organic matter content (SOMC), bulk density and water content. These variables were evaluated by extracting ground cores from riparian forests and grasslands of different litter cover. We also evaluated the relationship between the SOMC and the water volume deficit using regressions. Likewise, using pitfall traps we identified the trophic organization of soil-superficial arthropods. Due to its higher SOMC (> 5%), the soils of highly productive forest (high litter content) had significantly higher water contents than soils from less productive forests and grasslands (p < 0.05 in both cases). The water content found among the studied soil cover types suggests that the role of run-off in forest has been underestimated. Water basin management should encourage the establishment of productive riparian forests with CMOE values higher than 5% in order to promote volume and continuity in water offer from rivers due to the generation of constant subsurface flow and the regulation of sporadic superficial run-offs. The variety of functions and interactions accomplished by arthropods in forest soils suggests that a highly structured trophic organization favors conversion of simple and complex compounds in humus and therefore would favor soil water retention capacity.eng
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypetext/htmlspa
dc.language.isospaspa
dc.publisherUniversidad Distrital Francisco José de Caldasspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistas.udistrital.edu.co/index.php/colfor/article/view/7257spa
dc.subjectCamoa Rivereng
dc.subjectsoil humidity Llanos Orientaleseng
dc.subjectwater basin managementeng
dc.subjectorganic mattereng
dc.subjectwater flow regulationeng
dc.subjectcaño Camoaspa
dc.subjecthumedad del suelospa
dc.subjectLlanos Orientalesspa
dc.subjectmanejo de cuencasspa
dc.subjectmateria orgánicaspa
dc.subjectregulación hídricaspa
dc.titleEfectos del uso del suelo en las propiedades edáficas y la escorrentía superficial en una cuenca de la Orinoquia colombianaspa
dc.typeArtículo de revistaspa
dc.identifier.doi10.14483/udistrital.jour.colomb.for.2015.2.a06
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.localJournal articleeng
dc.title.translatedEffects of land use on soil properties and run-off in a colombian Orinoco water basineng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.relation.referencesAlcaldía de San Martín de los Llanos. (1996). Plan de manejo, protección, conservación y reforestación de la microcuenca del caño Camoa en el municipio de San Martín. San Martín, Meta: Alcaldía de San Martín de los Llanos. 53 p.spa
dc.relation.referencesBashour, I., & Sayegh, A. (2007). Methods of analysis for soils of arid and semi-arid regions. Rome: Food and Agriculture Organization of the United Nations. 119 p.spa
dc.relation.referencesBlinn, R., & Kilgore, A. (2001). Riparian Management Practices. Journal of Forestry, 8, 11-17.spa
dc.relation.referencesCastaño-Meneses, G., Palacios-Vargas, J., & Cutz-Pool, L. (2004). Feeding habits of Collembola and their ecological niche. Anales del Instituto de Biología Serie Zoología, 75, 135-142.spa
dc.relation.referencesCloarec, A., & Rivault, C. (1991). Age related changes in foraging in the German cockroach (Dictyoptera: Blattellidae). Journal of Insect Behavior, 4, 661-673.spa
dc.relation.referencesConant, R., Ryan, M., Agren, G., Birge, H., Davidson, E., Eliasson, P., Evans, S., Frey, S., Giardina, C., Hopkins, F., Hyvönen, R., Kirschbaum, M., Lavallee, J., Leifeld, J., Parton, W., Megan-Steinweg, J., Wallenstein, M., Martin-Wetterstedt, J. Ã…. & Bradford, M. (2011). Temperature and soil organic matter decomposition rates – synthesis of current knowledge and a way forward. Global Change Biology, 17, 3392-3404.spa
dc.relation.referencesCook, P., Hatton, T., Pidsley, D., Herczeg, A., Held, A., O´Grady, A., & Eamus, D. (1998). Water balance of a tropical woodland ecosystem, Northern Australia: a combination of micro, meteorological, soil physical and groundwater chemical approaches. Journal of Hydrology, 210, 161-177.spa
dc.relation.referencesCorporación para el Desarrollo Sostenible del área de Manejo Especial La Macarena (Cormacarena). (2004). Plan de acción trienal 2004 - 2006. Villavicencio: Cormacarena. 114 p.spa
dc.relation.referencesCritchley, W., & Bruijnzeel, L. (1996). Environmental impact of converting moist tropical forest to agriculture and plantations. IHP Humid Tropics Programme Series No 10. Holanda: UNESCO. 48 p.spa
dc.relation.referencesCurrie, C., Poulsen, M., Mendenhall, J., Boomasma, J., & Billen, J. (2006). Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science, 311, 81-83.spa
dc.relation.referencesDe Araújo, F., Ferreira, C., & Viegas, K. (2008). Subterranean ants (Hymenoptera, Formicidae) as prey of fossorial reptiles (Reptilia, Squamata: Amphisbaenidae) in Central Brazil. Papéis Avulsos de Zoologia, 48, 329-334.spa
dc.relation.referencesDe Fine Licht, H., & Boomsma, J. (2010). Forage collection, substrate preparation, and diet composition in fungus-growing ants. Ecological Entomology, 35, 259-269.spa
dc.relation.referencesDominati, E., Patterson, M., & Mackay, A . (2010). A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecological Economics, 69, 1858-1868.spa
dc.relation.referencesDonovan, S., Purdy, K., Kane, M., & Eggleton, P. (2004). Comparison of Euryarchatea strains in the guts and food-soil of the soil-feeding termite Cubitermes fungifaber across different soil types. Applied and Environmental Microbiology, 70, 3884-3892.spa
dc.relation.referencesElliot, E., Heil, J., Kelly, E., & Manger, H. (1999). Soil structural and others physical properties. En G. Robertson, D. Coleman, C. Bledsoe, P. Sollins (eds.). Standard soil methods for long term ecological research (pp. 55-73). Nueva York: Oxford University Press.spa
dc.relation.referencesErwin, T., Scott, J. (1980). Seasonal and size patterns, trophic structure and richness of coleopteran in the tropical arboreal ecosystem: the fauna of the tree Luehea seemanni triana and planch in the canal of Panama. The Coleopterists’ Bulletin, 34, 305-322.spa
dc.relation.referencesEvans, F., & Murdoch, W. (1968). Taxonomic composition, trophic structure and seasonal occurrence in a grassland insect community. Journal of Animal Ecology, 37, 259-273.spa
dc.relation.referencesFernández, F. (ed.) (2003). Introducción a las hormigas de la región neotropical. Bogotá: Instituto Humboldt. 398 p.spa
dc.relation.referencesGange, A. (2000). Arbuscular mycorrhizal fungi, Collembola and plant growth. Trends in Ecology & Evolution, 15, 369-372.spa
dc.relation.referencesGol, C. (2009). The effects of land use change on soil properties and organic carbon at Dagdami river catchment in Turkey. Journal of Environmental Biology, 30, 825-830.spa
dc.relation.referencesGrazhdani, S., & Shumka, S. (2007). An approach to mapping soil erosion by water with application to Albania. Desalinization, 213, 263-272.spa
dc.relation.referencesGuerrero, P., & Arias, M. (1984). La política agraria en el municipio de San Martín (Tesis de pregrado, Historia). Bogotá: Departamento de Historia, Facultad de Ciencias Humanas, Universidad Nacional de Colombia. 124 p.spa
dc.relation.referencesHuang, J., Zhan, J., Yan, H., Wu, F., & Deng, X. (2013). Evaluation of the impacts of land use on water quality: a case study in the Chaohu Lake basin, The Scientific World Journal, 2013, 7 p.spa
dc.relation.referencesInstituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH). (2006). Proyecto: Biodiversidad y desarrollo en ecorregiones estratégicas de Colombia, Orinoquía. Recuperado de http://www.humboldt.org.co/proyecto_orinoquia/spa
dc.relation.referencesInstituto Geográfico Agustín Codazzi (IGAC). (1996). Diccionario Geográfico de Colombia ( 3ª edición). Santafé de Bogotá: Horizonte Impresos. 2521 p.spa
dc.relation.referencesJames, S., Partel, M., Wilson, S., & Peltzer, D. (2003). Temporal heterogeneity of soil moisture in grassland and forest. Journal of Ecology, 91, 234-239.spa
dc.relation.referencesJobbagy, E., & Jackson, R. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10, 423-436.spa
dc.relation.referencesJonas, J., Wilson, G., White, P., & Joern, A. (2007). Consumption of mycorrhizal and saprophytic fungi by collembolan in grassland soils. Soil Biology & Biochemistry, 39, 2594-2602.spa
dc.relation.referencesKavian, A., Azmoodeh, A., Solaimani, K. (2014). Deforestation effects on soil properties, runoff and erosion in northern Iran. Arabian Journal of Geosciences, 7, 1941-1950.spa
dc.relation.referencesKillham, K. (1994). Soil ecology. Great Britain: Cambridge University Press. 242 p.spa
dc.relation.referencesKirkby, M. (1998). Evaluation of pilot runoff and erosion forecast using the CSEP and medrush models. En J. Boardman, & D. F. Favis-Mortlock (eds.). Modelling soil erosion by water (pp. 33-42). Berlin: Springer-Verlag.spa
dc.relation.referencesKluber, M., Olson, D., Puettmann, K. (2008). Amphibian distribution in riparian and upslope areas and their habitat associations on managed forest landscapes in the Oregon Coast Range. Forest Ecology and Management, 256, 529-535.spa
dc.relation.referencesKrishnaswamy, J., Halpin, P., & Richter, D. (2001). Dynamics of sediment discharge in relation to land-use and hydro-climatology in a humid tropical watershed in Costa Rica. Journal of Hydrology, 253, 91-109.spa
dc.relation.referencesKrushe, A., Ballester, M., & Leite, N. (2011). Hydrology and biochemistry of terra firme lowland tropical forest. En D. Levia, D. Moses, & T. Tanaka (eds.). Forest hydrology and biogeochemistry. Synthesis of past research and future direction (pp. 187-202). London: Springer Dordrecht Heidelberg.spa
dc.relation.referencesLaurence, B. (1955). The ecology of some British Sphaeroceridae (Borboridae, Diptera). Journal of Animal Ecology, 24, 187-199.spa
dc.relation.referencesLavelle, P. (1997). Faunal activities and soil processes: Adaptive strategies that determine ecosystem function. Advances in Ecological Research, 27, 93-132.spa
dc.relation.referencesLe Maitre, D., Kotzee, D., & O’Fareel, P. (2014). Impacts on land-cover change on the water flow regulation ecosystem service: Invasive alien plants, fire and their policy implications. Land Use Policy, 36, 171-181.spa
dc.relation.referencesLewis, L., Clark, L., Krapf, R., Manning, M., Staats, J., Subirge, T., Townsend, L., & Ypsilantis, B. (2003). Riparian area management: Riparian wetland soils. Denver, Colorado: Bureau of Land Management. 109 p.spa
dc.relation.referencesLiu, H., Lei, T., Zhao, J., Yuan, C., Fan, Y., Qua, L. (2011). Effects of rainfall intensity and antecedent soil water content on soil infiltrability under rainfall conditions using the run off-on-out method. Journal of Hydrology, 396, 24-32.spa
dc.relation.referencesLoaiza, J., & Valentijn, R. (2011). Desarrollo de modelos hidrológicos y modelación de procesos superficiales. Gestión y Ambiente, 14, 23-32.spa
dc.relation.referencesMackay, R., Kalf, J. 1968. (1968). Seasonal variation in standing crop and species diversity of insect communities in a small Quebec stream. Ecology, 50, 101-109.spa
dc.relation.referencesMartínez-Mena, M., López, J., Almagro, M., Boix-Fayos, V., & Albaladejo, J. (2008). Effect of water erosion and cultivation on the soil carbon stock in a semiarid area of south-east Spain. Soil and Tillage Research, 99, 119-129.spa
dc.relation.referencesMoran, M, D. (2003). Arguments for rejecting the sequential Bonferroni in ecological studies. Oikos, 100, 403-405.spa
dc.relation.referencesMotta, R., & Uieda, V. (2004). Diet and trophic groups of an aquatic insect community in a tropical stream. Brazilian Journal of Biology, 64, 809-817.spa
dc.relation.referencesNair, K. (2007). Tropical forest insect pests: Ecology, impact, and management. Cambridge: Cambridge University Press. 424 p.spa
dc.relation.referencesNaranjo, L., & Chacón de Ulloa, P. (1997). Diversidad de insectos y aves insectívoras de sotobosque en hábitats perturbados de selva lluviosa tropical. Caldasia, 19, 507-520.spa
dc.relation.referencesOlson, E., Engstromes, E., Doeringsfeld, M., & Bellig, R. (1995). Abundance and distribution of macroinvertebrates in relation to macrophyte communities in a prairie marsh, Swan Lake, Minnesota. Journal of Freshwater Ecology, 10, 325-335.spa
dc.relation.referencesOrganización de las Naciones Unidas para la Educación la Ciencia y la Cultura-Programa Hidrológico Internacional para América Latina y el Caribe. (2006). Documento Técnico No 2. Balance hídrico integrado y dinámico en el Salvador - Componente evaluación de recursos hídricos. Montevideo: UNESCO PHI-LAC. 139 p.spa
dc.relation.referencesPorto, J., López-Acevedo, M., & Roquero, C. (2003). Edafología para la agricultura y el medio ambiente (3ª edición). Madrid: Ediciones Mundi Prensa. 929 p.spa
dc.relation.referencesPramanik, R., Sarkar, K., & Joy, V. (2001). Efficiency of detritivore soil arthropods in mobilizing nutrients from leaf litter. Tropical Ecology, 42, 51-58.spa
dc.relation.referencesRawls, W., Pachepsky, Y., Ritchie, J., Sobecki, T., & Bloodworth, h. ( 2003) effect of soil carbon on soil water retention. Geoderma, 116, 61-76.spa
dc.relation.referencesRecher, H., Majer, J., & Ganesh, J. (1996). Seasonality of canopy invertebrate communitiess in eucalipt forest of Eastern and western Australia. Australian Journal of Ecology, 21, 64-80.spa
dc.relation.referencesReyes, M. (2014). Importancia económica de la provisión y regulación hídrica de los parques Nacionales de Colombia para los sectores productivos del país. Simposio 11. Reconocimiento de los servicios ecosistémicos de las áreas protegidas. II Congreso Colombiano de áreas Protegidas. Bogotá: Parques Nacionales Naturales de Colombia.spa
dc.relation.referencesRisch, S., & Carroll, C. (1983). effect of a keystone predaceous ant, Solenopsis geminata on arthropods in a tropical agroecosystem. Ecology, 63, 1979-1083.spa
dc.relation.referencesRodríguez, J. (2006). Dinámica de la materia orgánica en la cabecera de una quebrada de montaña (Tesis de maestría, Biología). Bogotá: Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia. 96 p.spa
dc.relation.referencesRodríguez, J., Rojas-Suárez, F., & Giraldo, D. (2010). Libro rojo de los ecosistemas terrestres de Venezuela. Caracas, Venezuela: Provita, Shell Venezuela, Lenovo. 324 p.spa
dc.relation.referencesRogers, L., Hinds, W., & Bushbom, R. (1976). A general weight vs. length relationship for insects. Annals of the Entomological Society of America, 69, 387-389.spa
dc.relation.referencesSánchez-Núñez, D., & Amat-García, G. (2005). Diversidad de la fauna de artrópodos terrestres del humedal Jaboque, Bogotá-Colombia. Caldasia, 27, 311-329.spa
dc.relation.referencesSan José, J., & Montes, R. (1992). Rainfall partitioning by a semidecidous forest grove in the savannas of the Orinoco Llanos, Venezuela. Journal of Hydrology, 132, 249-262.spa
dc.relation.referencesScanlon, B., Reedy, R., Stonestrom, D., Prodic, D., & Dennehys, K. (2005). Impact of land use and land cover change on groundwater recharge and quality in the southestern US. Global Change Biology, 11, 1577-1593.spa
dc.relation.referencesSchmidt, M., Torn, M., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I, Klebber, M., Kögel-knabner, I., Lehmann, J., Manning, D., Nannipieri, P, Rasse, D., Weiner, S., & Trumbore, S. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478, 49-56.spa
dc.relation.referencesSchowalter, T., & Ganio, L. (1998). Vertical and seasonal variation in canopy arthropod communities in an old-growth conifer forest in southwestern Washington, USA. Bulletin of Entomological Research, 88, 633-640.spa
dc.relation.referencesSchulte, E., & Hopkins, B. (1996). Estimation of soil organic matter by weight Organic Matter (LOI) loss-on-ignition. En F. R. Magdoff , M. A. Tabatabai, & E. A Hanlon (eds.). Soil Organic Matter: Analysis and Interpretation (pp. 21-31). Madison: Soil Science Society of America.spa
dc.relation.referencesSeyffarth, J. (1995). Interceptação de chuva em cerrado sensu stricto sob diferentes regimes de queima (Tese de maestria, Mestre Ecologia). Brasilia: Universidad de Brasilia. 93 p.spa
dc.relation.referencesSokal, R., & Rohlf, F. (1995). Biometry. The Principles and Practice of Statistics in Biological Research, 3rd Edition. W.H. New York: Freeman and Co. 887 p.spa
dc.relation.referencesStanton, N. (1988). The underground in grasslands. Annual Review of Ecology and Systematics, 19, 573-589. Statpoint Technologies Inc. (1998). STATGRAPHICS 4.0 PLUS.spa
dc.relation.referencesTreviño-Garza, E., Muñoz, C., Cavazos, C., & Barajas-Chaves, L. (2002). Evaluación del flujo hídrico superficial en la Sierra de San Carlos. Tamaulipas. Ciencia UANL, 5. Disponible en http://eprints.uanl.mx/500/spa
dc.relation.referencesTriplehorn, C., & Johnson, N. (2005). Borror and DeLong’s Introduction to the Study of Insects (7th Edition). Belmont, USA: Thomas Brooks/Cole. 863 p.spa
dc.relation.referencesTsiko, C., Makurira, H., Gerrits, A., & Saavenije, H. (2011). Measuring forest floor and canopy interception in a Savannah ecosystem. Physics and Chemistry of the Earth, 47-48, 122-127.spa
dc.relation.referencesVörösmarty, C., Lettenmaier, D., Leveque, C., Meybeck, M., Pahl-Wostl, C., Alcamo, J., Cosgrove, H., Grassl, H., Hoff, H., & Kabat P. (2004). Humans transforming the global water system. Eos, Transactions American Geophysical Union, 85, 509-520.spa
dc.relation.referencesWei, W., Chen, L., Fu, B., Huang, Z., Wu, D., & Gui, L. (2007). The effect of land uses and rainfall regimes on runoff and soil erosion in the semi-arid loess hilly area, China. Journal of Hydrology, 335, 247-258.spa
dc.relation.referencesZhou, Z., Shangguan, Z., & Zhao, D. (2006). Modeling vegetation coverage and soil erosion in the loess Plateau Area of China. Ecological Modelling, 198, 263-268.spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationvolume18spa
dc.relation.citationissue2spa
dc.relation.citationeditionNúm. 2 , Año 2015 : Julio-Diciembrespa
dc.relation.ispartofjournalColombia forestalspa
dc.identifier.eissn2256-201X
dc.identifier.urlhttps://doi.org/10.14483/udistrital.jour.colomb.for.2015.2.a06
dc.relation.citationstartpage255
dc.relation.citationendpage272
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/7257/10198
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/7257/10364
dc.type.contentTextspa
dspace.entity.typePublicationspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

https://creativecommons.org/licenses/by-nc-sa/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como https://creativecommons.org/licenses/by-nc-sa/4.0/