Mostrar el registro sencillo del ítem
Integración de plantaciones forestales comerciales colombianas en conceptos de biorrefinería termoquímica: una revisión
dc.contributor.author | Pérez Bayer, Juan Fernando | spa |
dc.contributor.author | Barrera, Rolando | spa |
dc.contributor.author | Ramírez Córdoba, Gloria Lucía | spa |
dc.date.accessioned | 2015-07-01 00:00:00 | |
dc.date.accessioned | 2023-09-19T21:07:41Z | |
dc.date.available | 2015-07-01 00:00:00 | |
dc.date.available | 2023-09-19T21:07:41Z | |
dc.date.issued | 2015-07-01 | |
dc.identifier.issn | 0120-0739 | |
dc.identifier.uri | http://test.repositoriodigital.com:8080/handle/123456789/44376 | |
dc.description.abstract | La integración de las plantaciones forestales comerciales colombianas en conceptos de biorrefinería se justifica desde las perspectivas técnica, energética, social y ambiental; adicionalmente se enmarca dentro de diversos planes y políticas de gobierno que consideran el aprovechamiento energético de la biomasa como alternativa recursiva para el potencial silvicultural del país. En este trabajo se revisan algunos procesos específicos que pueden evaluarse como posibles estrategias de integración de la madera plantada en Colombia bajo el concepto de biorrefinería. Se abarcan procesos de gasificación de baja-media potencia, gasificación a escala industrial para producción de biocombustibles de alta calidad, procesos de mejoramiento de la madera como biocombustible sólido, y la producción de biocarbón mediante métodos alternativos; por último, se revisa el mercado potencial de productos forestales de valor agregado. A modo de conclusión se destaca el alto potencial forestal de Colombia, por tanto, la unión estratégica entre universidades, centros de investigación y el sector forestal debe buscar la eficiencia e innovar para ofrecer productos diferenciadores y con valor agregado, aprovechando la existencia de nichos de mercado prácticamente inexplorados en Colombia, como la bioenergía y los bioproductos. A ese punto se dirige esta revisión, pues es necesario avanzar en el conocimiento que se tiene de las características y posibles usos de algunas especies forestales que se cultivan en el país desde conceptos de biorrefinería para bioenergía, biocombustibles y bioproductos bajo una perspectiva de sostenibilidad. | spa |
dc.description.abstract | The technical, energy, social and environmental benefits of the integration of commercial forest crops in Colombia under biorefinery concepts are evaluated. This concept is part of various programs and government policies that consider the energy use of biomass as an alternative source to the silvicultural potential of the country. In this paper we review some specific processes that can be evaluated as integration strategies with high potential to use the wood planted in Colombia under biorefinery concepts. The processes considered are low-middle power gasification, industrial scale gasification to high quality biofuel production, wood pretreatment to improve the solid biofuel and alternative methods for biochar production. Finally, we also review the value-added wood products market. To conclude we highlight the potential of Colombian forest in this industry, Through strategic alliances between universities, research centers and the forestry sector, more efficient and innovative development of new value-added products should be sought, taking advantage of the unexplored market opportunities in Colombia for bioenergy and bioproducts. This review aims to advance knowledge on the features and possible uses of forest species to produce bioenergy, biofuels, and bioproducts sustainably. | eng |
dc.format.mimetype | application/pdf | spa |
dc.format.mimetype | text/html | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Distrital Francisco José de Caldas | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.source | https://revistas.udistrital.edu.co/index.php/colfor/article/view/7508 | spa |
dc.subject | bioenergy | eng |
dc.subject | wood biomass | eng |
dc.subject | bioproducts | eng |
dc.subject | thermochemical biorefinery | eng |
dc.subject | forest commercial crops. | eng |
dc.subject | bioenergía | spa |
dc.subject | biomasa | spa |
dc.subject | bioproductos | spa |
dc.subject | biorrefinería termoquímica | spa |
dc.subject | plantaciones forestales comerciales. | spa |
dc.title | Integración de plantaciones forestales comerciales colombianas en conceptos de biorrefinería termoquímica: una revisión | spa |
dc.type | Artículo de revista | spa |
dc.identifier.doi | 10.14483/udistrital.jour.colomb.for.2015.2.a07 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_dcae04bc | spa |
dc.type.local | Journal article | eng |
dc.title.translated | Integration of Colombians Forest Commercial Crops in Thermochemical Biorefinery Concepts: A Review | eng |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.relation.references | Adinata, D., Mohd, W., & Aroua, M. K. (2007). Preparation and characterization of activated carbon from palm shell by chemical activation with K2CO3. Bioresource Technology, 96, 145-149. | spa |
dc.relation.references | Agrocadenas. (2005). La cadena forestal y madera en Colombia: Una mirada global de su estructura y dinámica 1991-2005. 44p. Disponible en: www.fidamerica.cl/admin/docdescargas/centrodoc/centrodoc_1140.pdf | spa |
dc.relation.references | Anderson, N., Jones, J., Page-Dumroese, D., McCollum, D., Baker, S., Loeffler, D., & Chung, W. (2013). A comparison of producer gas, biochar, and activated carbon from two distributed scale thermochemical conversion systems used to process forest biomass. Energies, 6(1), 164-183. | spa |
dc.relation.references | Asadullah, M., Miyazawa, T., Ito, S.-i., Kunimori, K., Yamada, M., & Tomishige, K. (2004). Gasification of different biomasses in a dual-bed gasifier system combined with novel catalysts with high energy efficiency. Applied Catalysis A: General, 267(1-2), 95-102. | spa |
dc.relation.references | Bludowsky, T., & Agar, D. W. (2009). Thermally integrated bio-syngas-production for Biorefineries. Chemical Engineering Research and Design, 87, 1328-1339 | spa |
dc.relation.references | Bridgeman, T. G., Jones, J. M., Williams, A., & Waldron, D. J. (2010). An investigation of the grindability of two torrefied energy crops. Fuel, 89, 3911-3918. | spa |
dc.relation.references | Buongiorno, J., Raunikar, R., & Zhu, S. (2011). Consequences of increasing bioenergy demand on wood and forests: An application of the Global Forest Products Model. Journal of Forest Economics, 17(2), 214-229. | spa |
dc.relation.references | Buragohain, B., Mahanta, P., & Moholkar, V. S. (2010). Thermodynamic optimization of biomass gasification for decentralized power generation and Fischer–Tropsch synthesis. Energy, 35(6), 2557-2579. | spa |
dc.relation.references | Ciolkozs, D., & Wallace, R. (2011). A review of Torrefaction for bioenergy feedstock production. Biofuels, Bioproducts and Biorefining, 5(3), 317-329. | spa |
dc.relation.references | Consejo Nacional de Política Económica y Social (CNPES). (2013). Distribución de recursos para el certificado de incentivo forestal con fines comerciales (CIF de reforestación) - Vigencia 2013. Consejo Nacional de Política Económica y Social. 23 p. | spa |
dc.relation.references | Consonni, S., Katofsky, R. E., & Larson, E. D. (2009). A gasification-based biorefinery for the pulp and paper industry. Chemical Engineering Research and Design, 87, 1293-1317. | spa |
dc.relation.references | Chambost, V., & Stuart, P. R. (2007). Selecting the most appropriate products for the forest biorefinery. Industrial Biotechnology, 3(2), 112-119. | spa |
dc.relation.references | Chaouch, M., Dumarçay, S., Pétrissans, A., Pétrissans, M., & Gérardin, P. (2013). Effect of heat treatment intensity on some conferred properties of different European softwood and hardwood species. Wood Science and Technology, 47(4), 663-673. | spa |
dc.relation.references | Chen, W.-H., Hsu, H.-C., Lu, K.-M., Lee, W.-J., & Lin, T.-C. (2011). Thermal pretreatment of wood (Lauan) block by torrefaction and its influence on the properties of the biomass. Energy, 36(5), 3012-3021. | spa |
dc.relation.references | Chen, W.-H., & Kuo, P.-C. (2010). A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy, 35(6), 2580-2586. | spa |
dc.relation.references | Chen, W.-H., & Kuo, P.-C. (2011). Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis. Energy, 36(11), 6451-6460. | spa |
dc.relation.references | Cherubini, F. (2010). The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51, 1451-1421. | spa |
dc.relation.references | Dávila, J. A. (2013). Biorrefinerías en Colombia. Puertas abiertas, UN Radio, http://www.unradio.unal.edu.co/: Universidad Nacional de Colombia, Sede Manizales. | spa |
dc.relation.references | Demirbas, A. (2009). Biorefineries: Current activities and future developments. Energy Conversion and Management, 50, 2781-2801. | spa |
dc.relation.references | Demirbas, M. F., Balat, M., & Balat, H. (2009). Potential contribution of biomass to the sustainable energy development. Energy Conversion and Management, 50(7), 1746-1760. | spa |
dc.relation.references | Di Blasi, C. (2000). Dynamic behaviour of stratified downdraft gasfiers. Chemical engineering science, 55(15), 2931-2944. Departamento Nacional de Planeación -DNP-. (2010). Plan Nacional de Desarrollo 2010-2014. Bogotá: Departamento Nacional de Planeación - Colombia. 538 p. | spa |
dc.relation.references | Energy Information Administration (EIA). (2010). Key word energy statistics. Paris: U.S. Energy Information Administration. 82 p. | spa |
dc.relation.references | Energy Information Administration (EIA). (2011). International Energy Outlook 2011. Washington DC: U.S. Energy Information Administration. 659 p. | spa |
dc.relation.references | Esteves, B., Velez Marques, A., Domingos, I., & Pereira, H. (2013). Chemical changes of heat treated pine and eucalypt wood monitored by FTIR. Maderas. Ciencia y Tecnología, 15, 245-258. | spa |
dc.relation.references | Esteves, B. M., Domingos, I. J., & Pereira, H. M. (2011). Pine wood modification by heat treatment in air. BioResources, 3(1), 142-154. | spa |
dc.relation.references | Food and Agriculture Organization of the United Nations (FAO). (2006). Tendencias y perspectivas del sector forestal en América Latina y el Caribe. Roma: FAO. 200 p. | spa |
dc.relation.references | Food and Agriculture Organization of the United Nations (FAO). (2008). Contribution of the forestry sector to national economies 1990-2006. 180 p. Disponible en: www.fao.org/docrep/011/k4588e/k4588e00.htm | spa |
dc.relation.references | Food and Agriculture Organization of the United Nations (FAO). (2012). El estado de los bosques del mundo 2012. 64 p. Disponible en http://www.fao.org/docrep/016/i3010s/i3010s.pdf | spa |
dc.relation.references | Fedemaderas. (2011). Acuerdo de competitividad cadena productiva forestal, madera, tableros, muebles y productos de madera. 26 p. | spa |
dc.relation.references | Fitz Patrick, M., Champagne, P., Cunningham, M. F., & Whitney, R. A. (2010). A biorefinery processing perspective: Treatment of lignocellulosic materials for the production of value-added products. Bioresource Technology, 101(23), 8915-8922. | spa |
dc.relation.references | FPAC. (2011). The New Face of the Canadian Forest Industry. 12 p. Disponible en www.fpac.ca/bio-pathways | spa |
dc.relation.references | Gasifipedia, N. (2013). Coal Power Gasification. Disponible en: http://www.netl.doe.gov/technologies/coalpower/gasification/gasifipedia/ | spa |
dc.relation.references | Ghalehno, M. D., & Nazerian, M. (2011). Changes in the Physical and Mechanical Properties of Iranian Hornbeam Wood (carpinus betulus) with Heat Treatment. European Journal of Scientific Research, 51(4), 490-498. | spa |
dc.relation.references | Ghatak, H. G. (2011). Biorefineries from the perspective of sustainability: Feedstocks, products, and processes. Renewable and Sustainable Energy Reviews, 15, 4042-4052. | spa |
dc.relation.references | Guo, J., & Lua, A. C. (1998). Characterization of chars pyrolyzed from oil palm stones for the preparation of activated carbons. Journal of Analytical and Applied Pyrolysis, 46, 113-125. | spa |
dc.relation.references | Hanaoka, T., Inoue, S., Uno, S., Ogi, T., & Minowa, T. (2005). Effect of woody biomass components on air-steam gasification. Biomass and Bioenergy, 28(1), 69-76. | spa |
dc.relation.references | Hook, M., & Aleklett, K. (2010). A review on coal-to-liquid fuels and its coal consumption. International Journal of Energy Research, 34. 848-864. | spa |
dc.relation.references | Ibrahim, R. H. H., Darvell, L. I., Jones, J. M., & Williams, A. (2013). Physicochemical characterisation of torrefied biomass. Journal of Analytical and Applied Pyrolysis, 103, 21-30. | spa |
dc.relation.references | International Bank for Reconstruction and Development -IBRD-. (1999). Energy from Biomass: A review of combustion and gasification technologies. Washington: The International Bank for Reconstruction and Development. 102 p. | spa |
dc.relation.references | IEA. (2003). Future Development of IGCC. Disponible en: http://www.iea-coal.org.uk/documents/82119/7089/Future-developments-in-IGCC | spa |
dc.relation.references | Kumar, A., Jones, D. D., & Hanna, M. A. (2009). Thermochemical Biomass gasification: A review of the current status of the technology. Energies, 2(3), 556-581 | spa |
dc.relation.references | Kunze, C., & Spliethoff, H. (2011). Modelling, comparison and operation experiences of entrained flow gasifier. Energy Conversion and Management, 52, 2135-2141. | spa |
dc.relation.references | Kwapinski, W., Byrne, C. M. P., Kryachko, E., Wolfram, P., Adley, C., Leahy, J. J., . . . Hayes, M. H. B. (2010). Biochar from Biomass and Waste. Waste and Biomass Valorization, 1(2), 177-189. | spa |
dc.relation.references | Lapuerta, M., Hernández, J. J., Pazo, A., & López, J. (2008). Gasification and co-gasification of biomass wastes: Effect of the biomass origin and the gasifier operating conditions. Fuel Processing Technology, 89(9), 828-837. | spa |
dc.relation.references | Lenis, Y. A., Osorio, L. F., & Pérez, J. F. (2013). Fixed bed gasification of wood species with potential as energy crops in Colombia: The Effect of the physicochemical properties. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 35(17), 1608-1617. | spa |
dc.relation.references | Li, Z., Zhao, W., Zhang, F., & Zhu, Q. (2008). Effect of corn stalk length on combustion characteristics in a fixed bed. Energy and Fuels, 22(3),2009-2014. | spa |
dc.relation.references | Linghong, Z., Xu, C. C., & Champagne, P. (2010). Overview of recent advances in thermo-chemical conversion of biomass. Energy Conversion and Management, 51, 14, 969-982. | spa |
dc.relation.references | Lu, J., Yu, L., Zhang, X., Zhang, S., & Dai, W. (2008). Hydrogen Production from a Fluidized-bed Coal Gasifier with In Situ Fixation of CO2 Part I: Numerical Model. Chemical Engineering & Technology, 31(2), 197-207. | spa |
dc.relation.references | Márquez-Montesino, F., Zanzi-Vigouroux, R., Birbas, D., Aguiar-Trujillo, L., & Ramos-Robaina, B. A. (2013). Carbón activado de semillas de tomate para adsorción de vapores de amoniaco, benceno y gasolina. Ingeniería Mecánica, 16(2), 83-90. | spa |
dc.relation.references | Maurstad, O., Herzog, H., Bolland, O., & Beér, J. (2013). Impact of coal quality and gasifier technology on IGCC performance. Norwegian Research Council in the KLIMATEK program. Disponible en: http://sequestration.mit.edu/pdf/GHGT8_Maurstad.pdf, | spa |
dc.relation.references | Ministerio de Ambiente, Vivienda y Desarrollo Territorial, Corporación Autónoma Regional de Risaralda, & Unión-Europea. (2011). Pacto intersectorial por la madera legal en Colombia. 22 p. Melgar, A., Borge, D., & Pérez, J. F. (2008). Estudio cinético del proceso de devolatilización de biomasa lignocelulósica mediante análisis termogravimétrico para tamaños de particula de 2 a 19 mm. Dyna, 75, 123-131. | spa |
dc.relation.references | Ministerio del Ambiente(Minambiente). (2000). Plan Nacional de Desarrollo Forestal. Ministerio del Medio Ambiente. 74 p. | spa |
dc.relation.references | Ministerio de Minas y Energía(Minminas). (2010). Programa de uso racional y eficiente de energía y fuentes no convencionales – PROURE. Bogotá: Ministerio de Minas y Energía. 151p. | spa |
dc.relation.references | Molina, S. (2012). Estudio de caracterización del residuo sólido carbonoso de gasificación de biomasa en el flujo arrastrado. Engineer, Universidad de Castilla - La Mancha. 86 p. | spa |
dc.relation.references | Nenoff, T. M., Berman, M. R., Glasgow, K. C., Cesa, M. C., & Taft, H. (2012). Introduction to the special section on alternative energy systems: hydrogen, solar, and biofuels. Industrial & Engineering Chemistry Research, 51(37), 11819-11820. | spa |
dc.relation.references | Octave, S., & Thomas, D. (2009). Biorefinery: Toward an industrial metabolism. Biochimie, 91(6), 659-664. | spa |
dc.relation.references | Osorio, L. F., Del Valle, J. I., & Restrepo, H. I. (2014). Valoración del potencial energético de núcleos forestales. En Universidad de Antioquia (Ed.), Biomasa forestal como alternativa energética: Análisis silvicultural, técnico y financiero de proyectos (1 ed., pp. 1-25). Medellín: Universidad de Antioquia. | spa |
dc.relation.references | Pérez, J. F., Lenis, Y., Rojas, S., & Leon, C. (2012). Decentralized power generation through biomass gasification: a technical - economic analysis and implications by reduction of CO2 emissions. Revista de la Facultad de Ingeniería, 62, 157-169. | spa |
dc.relation.references | Phanphanich, M., & Mani, S. (2011). Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresource Technology, 102(2), 1246-1253. | spa |
dc.relation.references | Prins, M. J., Ptasinski, K. J., & Janssen, F. J. J. G. (2006). More efficient biomass gasification via torrefaction. Energy, 31(15), 3458-3470. | spa |
dc.relation.references | Proexport. (2012). Sector forestal en Colombia. Disponible en http://www.inviertaencolombia.com.co/Adjuntos/Perfil_Forestal_2012.pdf | spa |
dc.relation.references | Ptasinski, K. J., Prins, M. J., & Pierik, A. (2007). Exergetic evaluation of biomass gasification. Energy, 32(4), 568-574. | spa |
dc.relation.references | Qian, K., Kumar, A., Patil, K., Bellmer, D., Wang, D., Yuan, W., & Huhnke, R. L. (2013). Effects of biomass feedstocks and gasification conditions on the physiochemical properties of char. Energies, 6, 3972-3986. | spa |
dc.relation.references | Rincón-Narváez, P. C. (2010). The current state of nonconventional sources of energy and related perspectives. Ingeniería e investigación, 30, 165-173. | spa |
dc.relation.references | Robinson, P. J., & Luyben, W. L. (2008). Simple dynamic gasifier model that runs in Aspen Dynamics. Industrial & Engineering Chemistry Research, 47(20), 7784-7792 | spa |
dc.relation.references | San Miguel, G., Domínguez, M. P., Hernández, M., & Sanz-Pérez, F. (2012). Characterization and potential applications of solid particles produced at a biomass gasification plant. Biomass and Bioenergy, 47, 134-144. | spa |
dc.relation.references | Tay, D. H. S., Kheireddine, H., Ng, D. K. S., El-Halwagi, M. M., & Tan, R. R. (2011). Conceptual synthesis of gasification-based biorefineries using thermodynamic equilibrium optimization models. Industrial & Engineering Chemistry Research, 50(18), 10681-10695. | spa |
dc.relation.references | Taylor, G. (2008). Biofuels and the biorefinery concept. Energy Policy, 36(12), 4406-4409. | spa |
dc.relation.references | Unidad de Planeación Minero Energetica (UPME). (2007). Plan energético nacional. Contexto y estrategias. Bogotá: Ministerio de Minas y Energía. 240 p. | spa |
dc.relation.references | Unidad de Planeación Minero Energetica (UPME). (2009). Boletín Minero Energético N°107. Bogotá: Ministerio de Minas y Energía. 77 p. | spa |
dc.relation.references | Unidad de Planeación Minero Energetica (UPME). (2010a). Formulación de un Plan de Desarrollo para las Fuentes no Convencionales de Energía en Colombia (PDFNCE). Bogotá: Ministerio de Minas y Energía. 173 p. | spa |
dc.relation.references | Unidad de Planeación Minero Energetica (UPME). (2010b). Plan de Abastecimiento para el Suministro y Transporte de Gas Natural. Disponible en http://www1.upme.gov.co/ | spa |
dc.relation.references | Unidad de Planeación Minero Energetica (UPME). (2010c). Plan nacional de desarrollo para las fuentes no convencionales de energía. Bogotá: Ministerio de Minas y Energía. 193 p. | spa |
dc.relation.references | Vaezi, M., Passandideh-Fard, M., Moghiman, M., & Charmchi, M. (2012). On a methodology for selecting biomass materials for gasification purposes. Fuel Processing Technology, 98, 74-81. | spa |
dc.relation.references | Van der Stelt, M. J. C., Gerhauser, H., Kiel, J. H. A., & Ptasinski, K. J. (2011). Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass and Bioenergy, 35(9), 3748-3762. | spa |
dc.relation.references | Vishnu, M., & Mala, R. (2012). Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Progress in Energy and Combustion Science, 38(9), 522-550. | spa |
dc.relation.references | Vitasari, C., Jurascik, M., & Ptasinski, K. (2011). Exergy analysis of biomass to synthetic natural gas (SNG) process via indirect gasification of various biomass feedstock. Energy, 36(6), 3825-3837. | spa |
dc.relation.references | Yu, G. W., Wang, Y. M., & Xu, Y. Y. (2012). Modeling analysis of Shell, Texaco gasification technology’s effects on water gas shift for Fischer-Tropsch process. Advanced Materials Research, 608, 1446-1453. | spa |
dc.relation.references | Zhang, Y., Li, B., Li, H., & Liu, H. (2011). Thermodynamic evaluation of biomass gasification with air in autothermal gasifiers. Thermochimica Acta, 519(1-2), 65-71. | spa |
dc.relation.references | Zhao, Y., Wen, H., & Xu, X. (2006). Conceptual design and simulation study of a co-gasification technology. Energy Conversion and Management, 47, 1416-1428 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ARTREV | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.relation.citationvolume | 18 | spa |
dc.relation.citationissue | 2 | spa |
dc.relation.citationedition | Núm. 2 , Año 2015 : Julio-Diciembre | spa |
dc.relation.ispartofjournal | Colombia forestal | spa |
dc.identifier.eissn | 2256-201X | |
dc.identifier.url | https://doi.org/10.14483/udistrital.jour.colomb.for.2015.2.a07 | |
dc.relation.citationstartpage | 273 | |
dc.relation.citationendpage | 294 | |
dc.relation.bitstream | https://revistas.udistrital.edu.co/index.php/colfor/article/download/7508/10200 | |
dc.relation.bitstream | https://revistas.udistrital.edu.co/index.php/colfor/article/download/7508/10365 | |
dc.type.content | Text | spa |
dspace.entity.type | Publication | spa |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Distrital tst 1 [372]