Mostrar el registro sencillo del ítem

dc.contributor.authorPérez Bayer, Juan Fernandospa
dc.contributor.authorBarrera, Rolandospa
dc.contributor.authorRamírez Córdoba, Gloria Lucíaspa
dc.date.accessioned2015-07-01 00:00:00
dc.date.accessioned2023-09-19T21:07:41Z
dc.date.available2015-07-01 00:00:00
dc.date.available2023-09-19T21:07:41Z
dc.date.issued2015-07-01
dc.identifier.issn0120-0739
dc.identifier.urihttp://test.repositoriodigital.com:8080/handle/123456789/44376
dc.description.abstractLa integración de las plantaciones forestales comerciales colombianas en conceptos de biorrefinería se justifica desde las perspectivas técnica, energética, social y ambiental; adicionalmente se enmarca dentro de diversos planes y políticas de gobierno que consideran el aprovechamiento energético de la biomasa como alternativa recursiva para el potencial silvicultural del país. En este trabajo se revisan algunos procesos específicos que pueden evaluarse como posibles estrategias de integración de la madera plantada en Colombia bajo el concepto de biorrefinería. Se abarcan procesos de gasificación de baja-media potencia, gasificación a escala industrial para producción de biocombustibles de alta calidad, procesos de mejoramiento de la madera como biocombustible sólido, y la producción de biocarbón mediante métodos alternativos; por último, se revisa el mercado potencial de productos forestales de valor agregado. A modo de conclusión se destaca el alto potencial forestal de Colombia, por tanto, la unión estratégica entre universidades, centros de investigación y el sector forestal debe buscar la eficiencia e innovar para ofrecer productos diferenciadores y con valor agregado, aprovechando la existencia de nichos de mercado prácticamente inexplorados en Colombia, como la bioenergía y los bioproductos. A ese punto se dirige esta revisión, pues es necesario avanzar en el conocimiento que se tiene de las características y posibles usos de algunas especies forestales que se cultivan en el país desde conceptos de biorrefinería para bioenergía, biocombustibles y bioproductos bajo una perspectiva de sostenibilidad.spa
dc.description.abstractThe technical, energy, social and environmental benefits of the integration of commercial forest crops in Colombia under biorefinery concepts are evaluated. This concept is part of various programs and government policies that consider the energy use of biomass as an alternative source to the silvicultural potential of the country. In this paper we review some specific processes that can be evaluated as integration strategies with high potential to use the wood planted in Colombia under biorefinery concepts. The processes considered are low-middle power gasification, industrial scale gasification to high quality biofuel production, wood pretreatment to improve the solid biofuel and alternative methods for biochar production. Finally, we also review the value-added wood products market. To conclude we highlight the potential of Colombian forest in this industry, Through strategic alliances between universities, research centers and the forestry sector, more efficient and innovative development of new value-added products should be sought, taking advantage of the unexplored market opportunities in Colombia for bioenergy and bioproducts. This review aims to advance knowledge on the features and possible uses of forest species to produce bioenergy, biofuels, and bioproducts sustainably.eng
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypetext/htmlspa
dc.language.isospaspa
dc.publisherUniversidad Distrital Francisco José de Caldasspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistas.udistrital.edu.co/index.php/colfor/article/view/7508spa
dc.subjectbioenergyeng
dc.subjectwood biomasseng
dc.subjectbioproductseng
dc.subjectthermochemical biorefineryeng
dc.subjectforest commercial crops.eng
dc.subjectbioenergíaspa
dc.subjectbiomasaspa
dc.subjectbioproductosspa
dc.subjectbiorrefinería termoquímicaspa
dc.subjectplantaciones forestales comerciales.spa
dc.titleIntegración de plantaciones forestales comerciales colombianas en conceptos de biorrefinería termoquímica: una revisiónspa
dc.typeArtículo de revistaspa
dc.identifier.doi10.14483/udistrital.jour.colomb.for.2015.2.a07
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_dcae04bcspa
dc.type.localJournal articleeng
dc.title.translatedIntegration of Colombians Forest Commercial Crops in Thermochemical Biorefinery Concepts: A Revieweng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.relation.referencesAdinata, D., Mohd, W., & Aroua, M. K. (2007). Preparation and characterization of activated carbon from palm shell by chemical activation with K2CO3. Bioresource Technology, 96, 145-149.spa
dc.relation.referencesAgrocadenas. (2005). La cadena forestal y madera en Colombia: Una mirada global de su estructura y dinámica 1991-2005. 44p. Disponible en: www.fidamerica.cl/admin/docdescargas/centrodoc/centrodoc_1140.pdfspa
dc.relation.referencesAnderson, N., Jones, J., Page-Dumroese, D., McCollum, D., Baker, S., Loeffler, D., & Chung, W. (2013). A comparison of producer gas, biochar, and activated carbon from two distributed scale thermochemical conversion systems used to process forest biomass. Energies, 6(1), 164-183.spa
dc.relation.referencesAsadullah, M., Miyazawa, T., Ito, S.-i., Kunimori, K., Yamada, M., & Tomishige, K. (2004). Gasification of different biomasses in a dual-bed gasifier system combined with novel catalysts with high energy efficiency. Applied Catalysis A: General, 267(1-2), 95-102.spa
dc.relation.referencesBludowsky, T., & Agar, D. W. (2009). Thermally integrated bio-syngas-production for Biorefineries. Chemical Engineering Research and Design, 87, 1328-1339spa
dc.relation.referencesBridgeman, T. G., Jones, J. M., Williams, A., & Waldron, D. J. (2010). An investigation of the grindability of two torrefied energy crops. Fuel, 89, 3911-3918.spa
dc.relation.referencesBuongiorno, J., Raunikar, R., & Zhu, S. (2011). Consequences of increasing bioenergy demand on wood and forests: An application of the Global Forest Products Model. Journal of Forest Economics, 17(2), 214-229.spa
dc.relation.referencesBuragohain, B., Mahanta, P., & Moholkar, V. S. (2010). Thermodynamic optimization of biomass gasification for decentralized power generation and Fischer–Tropsch synthesis. Energy, 35(6), 2557-2579.spa
dc.relation.referencesCiolkozs, D., & Wallace, R. (2011). A review of Torrefaction for bioenergy feedstock production. Biofuels, Bioproducts and Biorefining, 5(3), 317-329.spa
dc.relation.referencesConsejo Nacional de Política Económica y Social (CNPES). (2013). Distribución de recursos para el certificado de incentivo forestal con fines comerciales (CIF de reforestación) - Vigencia 2013. Consejo Nacional de Política Económica y Social. 23 p.spa
dc.relation.referencesConsonni, S., Katofsky, R. E., & Larson, E. D. (2009). A gasification-based biorefinery for the pulp and paper industry. Chemical Engineering Research and Design, 87, 1293-1317.spa
dc.relation.referencesChambost, V., & Stuart, P. R. (2007). Selecting the most appropriate products for the forest biorefinery. Industrial Biotechnology, 3(2), 112-119.spa
dc.relation.referencesChaouch, M., Dumarçay, S., Pétrissans, A., Pétrissans, M., & Gérardin, P. (2013). Effect of heat treatment intensity on some conferred properties of different European softwood and hardwood species. Wood Science and Technology, 47(4), 663-673.spa
dc.relation.referencesChen, W.-H., Hsu, H.-C., Lu, K.-M., Lee, W.-J., & Lin, T.-C. (2011). Thermal pretreatment of wood (Lauan) block by torrefaction and its influence on the properties of the biomass. Energy, 36(5), 3012-3021.spa
dc.relation.referencesChen, W.-H., & Kuo, P.-C. (2010). A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy, 35(6), 2580-2586.spa
dc.relation.referencesChen, W.-H., & Kuo, P.-C. (2011). Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis. Energy, 36(11), 6451-6460.spa
dc.relation.referencesCherubini, F. (2010). The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51, 1451-1421.spa
dc.relation.referencesDávila, J. A. (2013). Biorrefinerías en Colombia. Puertas abiertas, UN Radio, http://www.unradio.unal.edu.co/: Universidad Nacional de Colombia, Sede Manizales.spa
dc.relation.referencesDemirbas, A. (2009). Biorefineries: Current activities and future developments. Energy Conversion and Management, 50, 2781-2801.spa
dc.relation.referencesDemirbas, M. F., Balat, M., & Balat, H. (2009). Potential contribution of biomass to the sustainable energy development. Energy Conversion and Management, 50(7), 1746-1760.spa
dc.relation.referencesDi Blasi, C. (2000). Dynamic behaviour of stratified downdraft gasfiers. Chemical engineering science, 55(15), 2931-2944. Departamento Nacional de Planeación -DNP-. (2010). Plan Nacional de Desarrollo 2010-2014. Bogotá: Departamento Nacional de Planeación - Colombia. 538 p.spa
dc.relation.referencesEnergy Information Administration (EIA). (2010). Key word energy statistics. Paris: U.S. Energy Information Administration. 82 p.spa
dc.relation.referencesEnergy Information Administration (EIA). (2011). International Energy Outlook 2011. Washington DC: U.S. Energy Information Administration. 659 p.spa
dc.relation.referencesEsteves, B., Velez Marques, A., Domingos, I., & Pereira, H. (2013). Chemical changes of heat treated pine and eucalypt wood monitored by FTIR. Maderas. Ciencia y Tecnología, 15, 245-258.spa
dc.relation.referencesEsteves, B. M., Domingos, I. J., & Pereira, H. M. (2011). Pine wood modification by heat treatment in air. BioResources, 3(1), 142-154.spa
dc.relation.referencesFood and Agriculture Organization of the United Nations (FAO). (2006). Tendencias y perspectivas del sector forestal en América Latina y el Caribe. Roma: FAO. 200 p.spa
dc.relation.referencesFood and Agriculture Organization of the United Nations (FAO). (2008). Contribution of the forestry sector to national economies 1990-2006. 180 p. Disponible en: www.fao.org/docrep/011/k4588e/k4588e00.htmspa
dc.relation.referencesFood and Agriculture Organization of the United Nations (FAO). (2012). El estado de los bosques del mundo 2012. 64 p. Disponible en http://www.fao.org/docrep/016/i3010s/i3010s.pdfspa
dc.relation.referencesFedemaderas. (2011). Acuerdo de competitividad cadena productiva forestal, madera, tableros, muebles y productos de madera. 26 p.spa
dc.relation.referencesFitz Patrick, M., Champagne, P., Cunningham, M. F., & Whitney, R. A. (2010). A biorefinery processing perspective: Treatment of lignocellulosic materials for the production of value-added products. Bioresource Technology, 101(23), 8915-8922.spa
dc.relation.referencesFPAC. (2011). The New Face of the Canadian Forest Industry. 12 p. Disponible en www.fpac.ca/bio-pathwaysspa
dc.relation.referencesGasifipedia, N. (2013). Coal Power Gasification. Disponible en: http://www.netl.doe.gov/technologies/coalpower/gasification/gasifipedia/spa
dc.relation.referencesGhalehno, M. D., & Nazerian, M. (2011). Changes in the Physical and Mechanical Properties of Iranian Hornbeam Wood (carpinus betulus) with Heat Treatment. European Journal of Scientific Research, 51(4), 490-498.spa
dc.relation.referencesGhatak, H. G. (2011). Biorefineries from the perspective of sustainability: Feedstocks, products, and processes. Renewable and Sustainable Energy Reviews, 15, 4042-4052.spa
dc.relation.referencesGuo, J., & Lua, A. C. (1998). Characterization of chars pyrolyzed from oil palm stones for the preparation of activated carbons. Journal of Analytical and Applied Pyrolysis, 46, 113-125.spa
dc.relation.referencesHanaoka, T., Inoue, S., Uno, S., Ogi, T., & Minowa, T. (2005). Effect of woody biomass components on air-steam gasification. Biomass and Bioenergy, 28(1), 69-76.spa
dc.relation.referencesHook, M., & Aleklett, K. (2010). A review on coal-to-liquid fuels and its coal consumption. International Journal of Energy Research, 34. 848-864.spa
dc.relation.referencesIbrahim, R. H. H., Darvell, L. I., Jones, J. M., & Williams, A. (2013). Physicochemical characterisation of torrefied biomass. Journal of Analytical and Applied Pyrolysis, 103, 21-30.spa
dc.relation.referencesInternational Bank for Reconstruction and Development -IBRD-. (1999). Energy from Biomass: A review of combustion and gasification technologies. Washington: The International Bank for Reconstruction and Development. 102 p.spa
dc.relation.referencesIEA. (2003). Future Development of IGCC. Disponible en: http://www.iea-coal.org.uk/documents/82119/7089/Future-developments-in-IGCCspa
dc.relation.referencesKumar, A., Jones, D. D., & Hanna, M. A. (2009). Thermochemical Biomass gasification: A review of the current status of the technology. Energies, 2(3), 556-581spa
dc.relation.referencesKunze, C., & Spliethoff, H. (2011). Modelling, comparison and operation experiences of entrained flow gasifier. Energy Conversion and Management, 52, 2135-2141.spa
dc.relation.referencesKwapinski, W., Byrne, C. M. P., Kryachko, E., Wolfram, P., Adley, C., Leahy, J. J., . . . Hayes, M. H. B. (2010). Biochar from Biomass and Waste. Waste and Biomass Valorization, 1(2), 177-189.spa
dc.relation.referencesLapuerta, M., Hernández, J. J., Pazo, A., & López, J. (2008). Gasification and co-gasification of biomass wastes: Effect of the biomass origin and the gasifier operating conditions. Fuel Processing Technology, 89(9), 828-837.spa
dc.relation.referencesLenis, Y. A., Osorio, L. F., & Pérez, J. F. (2013). Fixed bed gasification of wood species with potential as energy crops in Colombia: The Effect of the physicochemical properties. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 35(17), 1608-1617.spa
dc.relation.referencesLi, Z., Zhao, W., Zhang, F., & Zhu, Q. (2008). Effect of corn stalk length on combustion characteristics in a fixed bed. Energy and Fuels, 22(3),2009-2014.spa
dc.relation.referencesLinghong, Z., Xu, C. C., & Champagne, P. (2010). Overview of recent advances in thermo-chemical conversion of biomass. Energy Conversion and Management, 51, 14, 969-982.spa
dc.relation.referencesLu, J., Yu, L., Zhang, X., Zhang, S., & Dai, W. (2008). Hydrogen Production from a Fluidized-bed Coal Gasifier with In Situ Fixation of CO2 Part I: Numerical Model. Chemical Engineering & Technology, 31(2), 197-207.spa
dc.relation.referencesMárquez-Montesino, F., Zanzi-Vigouroux, R., Birbas, D., Aguiar-Trujillo, L., & Ramos-Robaina, B. A. (2013). Carbón activado de semillas de tomate para adsorción de vapores de amoniaco, benceno y gasolina. Ingeniería Mecánica, 16(2), 83-90.spa
dc.relation.referencesMaurstad, O., Herzog, H., Bolland, O., & Beér, J. (2013). Impact of coal quality and gasifier technology on IGCC performance. Norwegian Research Council in the KLIMATEK program. Disponible en: http://sequestration.mit.edu/pdf/GHGT8_Maurstad.pdf,spa
dc.relation.referencesMinisterio de Ambiente, Vivienda y Desarrollo Territorial, Corporación Autónoma Regional de Risaralda, & Unión-Europea. (2011). Pacto intersectorial por la madera legal en Colombia. 22 p. Melgar, A., Borge, D., & Pérez, J. F. (2008). Estudio cinético del proceso de devolatilización de biomasa lignocelulósica mediante análisis termogravimétrico para tamaños de particula de 2 a 19 mm. Dyna, 75, 123-131.spa
dc.relation.referencesMinisterio del Ambiente(Minambiente). (2000). Plan Nacional de Desarrollo Forestal. Ministerio del Medio Ambiente. 74 p.spa
dc.relation.referencesMinisterio de Minas y Energía(Minminas). (2010). Programa de uso racional y eficiente de energía y fuentes no convencionales – PROURE. Bogotá: Ministerio de Minas y Energía. 151p.spa
dc.relation.referencesMolina, S. (2012). Estudio de caracterización del residuo sólido carbonoso de gasificación de biomasa en el flujo arrastrado. Engineer, Universidad de Castilla - La Mancha. 86 p.spa
dc.relation.referencesNenoff, T. M., Berman, M. R., Glasgow, K. C., Cesa, M. C., & Taft, H. (2012). Introduction to the special section on alternative energy systems: hydrogen, solar, and biofuels. Industrial & Engineering Chemistry Research, 51(37), 11819-11820.spa
dc.relation.referencesOctave, S., & Thomas, D. (2009). Biorefinery: Toward an industrial metabolism. Biochimie, 91(6), 659-664.spa
dc.relation.referencesOsorio, L. F., Del Valle, J. I., & Restrepo, H. I. (2014). Valoración del potencial energético de núcleos forestales. En Universidad de Antioquia (Ed.), Biomasa forestal como alternativa energética: Análisis silvicultural, técnico y financiero de proyectos (1 ed., pp. 1-25). Medellín: Universidad de Antioquia.spa
dc.relation.referencesPérez, J. F., Lenis, Y., Rojas, S., & Leon, C. (2012). Decentralized power generation through biomass gasification: a technical - economic analysis and implications by reduction of CO2 emissions. Revista de la Facultad de Ingeniería, 62, 157-169.spa
dc.relation.referencesPhanphanich, M., & Mani, S. (2011). Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresource Technology, 102(2), 1246-1253.spa
dc.relation.referencesPrins, M. J., Ptasinski, K. J., & Janssen, F. J. J. G. (2006). More efficient biomass gasification via torrefaction. Energy, 31(15), 3458-3470.spa
dc.relation.referencesProexport. (2012). Sector forestal en Colombia. Disponible en http://www.inviertaencolombia.com.co/Adjuntos/Perfil_Forestal_2012.pdfspa
dc.relation.referencesPtasinski, K. J., Prins, M. J., & Pierik, A. (2007). Exergetic evaluation of biomass gasification. Energy, 32(4), 568-574.spa
dc.relation.referencesQian, K., Kumar, A., Patil, K., Bellmer, D., Wang, D., Yuan, W., & Huhnke, R. L. (2013). Effects of biomass feedstocks and gasification conditions on the physiochemical properties of char. Energies, 6, 3972-3986.spa
dc.relation.referencesRincón-Narváez, P. C. (2010). The current state of nonconventional sources of energy and related perspectives. Ingeniería e investigación, 30, 165-173.spa
dc.relation.referencesRobinson, P. J., & Luyben, W. L. (2008). Simple dynamic gasifier model that runs in Aspen Dynamics. Industrial & Engineering Chemistry Research, 47(20), 7784-7792spa
dc.relation.referencesSan Miguel, G., Domínguez, M. P., Hernández, M., & Sanz-Pérez, F. (2012). Characterization and potential applications of solid particles produced at a biomass gasification plant. Biomass and Bioenergy, 47, 134-144.spa
dc.relation.referencesTay, D. H. S., Kheireddine, H., Ng, D. K. S., El-Halwagi, M. M., & Tan, R. R. (2011). Conceptual synthesis of gasification-based biorefineries using thermodynamic equilibrium optimization models. Industrial & Engineering Chemistry Research, 50(18), 10681-10695.spa
dc.relation.referencesTaylor, G. (2008). Biofuels and the biorefinery concept. Energy Policy, 36(12), 4406-4409.spa
dc.relation.referencesUnidad de Planeación Minero Energetica (UPME). (2007). Plan energético nacional. Contexto y estrategias. Bogotá: Ministerio de Minas y Energía. 240 p.spa
dc.relation.referencesUnidad de Planeación Minero Energetica (UPME). (2009). Boletín Minero Energético N°107. Bogotá: Ministerio de Minas y Energía. 77 p.spa
dc.relation.referencesUnidad de Planeación Minero Energetica (UPME). (2010a). Formulación de un Plan de Desarrollo para las Fuentes no Convencionales de Energía en Colombia (PDFNCE). Bogotá: Ministerio de Minas y Energía. 173 p.spa
dc.relation.referencesUnidad de Planeación Minero Energetica (UPME). (2010b). Plan de Abastecimiento para el Suministro y Transporte de Gas Natural. Disponible en http://www1.upme.gov.co/spa
dc.relation.referencesUnidad de Planeación Minero Energetica (UPME). (2010c). Plan nacional de desarrollo para las fuentes no convencionales de energía. Bogotá: Ministerio de Minas y Energía. 193 p.spa
dc.relation.referencesVaezi, M., Passandideh-Fard, M., Moghiman, M., & Charmchi, M. (2012). On a methodology for selecting biomass materials for gasification purposes. Fuel Processing Technology, 98, 74-81.spa
dc.relation.referencesVan der Stelt, M. J. C., Gerhauser, H., Kiel, J. H. A., & Ptasinski, K. J. (2011). Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass and Bioenergy, 35(9), 3748-3762.spa
dc.relation.referencesVishnu, M., & Mala, R. (2012). Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Progress in Energy and Combustion Science, 38(9), 522-550.spa
dc.relation.referencesVitasari, C., Jurascik, M., & Ptasinski, K. (2011). Exergy analysis of biomass to synthetic natural gas (SNG) process via indirect gasification of various biomass feedstock. Energy, 36(6), 3825-3837.spa
dc.relation.referencesYu, G. W., Wang, Y. M., & Xu, Y. Y. (2012). Modeling analysis of Shell, Texaco gasification technology’s effects on water gas shift for Fischer-Tropsch process. Advanced Materials Research, 608, 1446-1453.spa
dc.relation.referencesZhang, Y., Li, B., Li, H., & Liu, H. (2011). Thermodynamic evaluation of biomass gasification with air in autothermal gasifiers. Thermochimica Acta, 519(1-2), 65-71.spa
dc.relation.referencesZhao, Y., Wen, H., & Xu, X. (2006). Conceptual design and simulation study of a co-gasification technology. Energy Conversion and Management, 47, 1416-1428spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREVspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationvolume18spa
dc.relation.citationissue2spa
dc.relation.citationeditionNúm. 2 , Año 2015 : Julio-Diciembrespa
dc.relation.ispartofjournalColombia forestalspa
dc.identifier.eissn2256-201X
dc.identifier.urlhttps://doi.org/10.14483/udistrital.jour.colomb.for.2015.2.a07
dc.relation.citationstartpage273
dc.relation.citationendpage294
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/7508/10200
dc.relation.bitstreamhttps://revistas.udistrital.edu.co/index.php/colfor/article/download/7508/10365
dc.type.contentTextspa
dspace.entity.typePublicationspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

https://creativecommons.org/licenses/by-nc-sa/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como https://creativecommons.org/licenses/by-nc-sa/4.0/